246 research outputs found

    Role of O

    Full text link

    Rhizospheric NO interacts with the acquisition of reduced N sources by the roots of European beech (Fagus sylvatica L.)

    Get PDF
    AbstractThe gas phase of the soil plays an important role in plant growth and development. We investigated the effect of rhizospheric NO as a signalling compound for N uptake of beech roots. Following exposure to NO, ammonium and glutamine uptake into roots were determined using 15N-labelling, and gene expression of selected transporters was analysed by quantitative real-time PCR. Uptake of both N sources increased significantly with elevated NO concentration. However, with one exception, this increase was not reflected in up-regulation of expression of the respective transporters

    Developmental Changes in the Potential for H 2

    Full text link

    Stimulation of H 2

    Full text link

    Time resolved sulphur and nutrient distribution in Norway spruce drill cores using ICP-OES

    Get PDF
    Methods were developed for detailed dendrochemical studies of low sulphur contents in Norway spruce (Picea abies L. Karst.). This tree species is the dominant conifer species in Northern and Central Europe and therefore predestined for a possible use as an environmental archive. Two independent digestion procedures were investigated with respect to their suitability for element determination and optimised for analysis of the low sulphur content in wood. A modified oxygen bomb combustion procedure and a microwave acid digestion procedure were evaluated with the goal to obtain sufficient detection limits in order to access low concentrated non-metals with an appropriate time resolution. Method development included evaluation of strategies preventing losses of volatile sulphur species. Digestion efficiency was demonstrated by recovery rates for various certified plant standard reference materials (NIST 1572, NIST 1547, RM 8436, BCR 101, NIST 1515, RM 8436, NIST 1573, NIST 1575) as well as self prepared standards with defined low sulphur content of 20 to 200mg kg−1, which are typical for Norway spruce wood samples. Ultra sonic nebulisation (USN) was evaluated with respect to signal enhancement for sample introduction to inductively coupled plasma optical emission spectrometry (ICP-OES). The optimised procedure was applied to Norway spruce drill cores from locations with different environmental conditions in Switzerland, in order to investigate the anthropogenic impact of sulphur and the suitability of Norway spruce as an environmental archive for sulphu

    Impact of European Beech Forest Diversification on Soil Organic Carbon and Total Nitrogen Stocks–A Meta-Analysis

    Get PDF
    Drought-sensitive European beech forests are increasingly challenged by climate change. Admixing other, preferably more deep-rooting, tree species has been proposed to increase the resilience of beech forests to drought. This diversification of beech forests might also affect soil organic carbon (SOC) and total nitrogen (TN) stocks that are relevant for a wide range of soil functions and ecosystem services, such as water and nutrient retention, filter functions and erosion control. Since information of these effects is scattered, our aim was to synthesize results from studies that compared SOC/TN stocks of beech monocultures with those of beech stands mixed with other tree species as well as monocultures of other tree species. We conducted a meta-analysis including 38 studies with 203, 220, and 160 observations for forest floor (i.e., the organic surface layer), mineral soil (0.5 m depth) and the total soil profile, respectively. Monoculture conifer stands had higher SOC stocks compared to monoculture beech in general, especially in the forest floor (up to 200% in larch forests). In contrast, other broadleaved tree species (oak, ash, lime, maple, hornbeam) showed lower SOC stocks in the forest floor compared to beech, with little impact on total SOC stocks. Comparing mixed beech-conifer stands (average mixing ratio with regard to number of trees 50:50) with beech monocultures revealed significantly higher total SOC stocks of around 9% and a smaller increase in TN stocks of around 4%. This equaled a SOC accrual of 0.1 Mg ha−1^{-1} yr−1^{-1}. In contrast, mixed beech-broadleaved stands did not show significant differences in total SOC stocks. Conifer admixture effects on beech forest SOC were of additive nature. Admixing other tree species to beech monoculture stands was most effective to increase SOC stocks on low carbon soils with a sandy texture and nitrogen limitation (i.e., a high C/N ratio and low nitrogen deposition). We conclude that, with targeted admixture measures of coniferous species, an increase in SOC stocks in beech forests can be achieved as part of the necessary adaptation of beech forests to climate change

    Surviving Volcanic Environments — Interaction of Soil Mineral Content and Plant Element Composition

    Get PDF
    Different plant species were investigated fromtwo Aeolian Islands located in close vicinity, one with fumarolic activity (Vulcano) and one without (Lipari). On Vulcano, elevated concentrations of SO2/H2S determined in ambient air indicated the need of plants to adapt to harmful sulphur concentrations by detoxification strategies. The current study was focused on evaluating the element composition of plant leaves in relation to soil mineral contents. The soil of Volcano was characterised by a significantly lower pH on all three sampling sites as well as very high amounts of sulphur and plant available sulphate due to volcanic activities, compared to Lipari. By contrast, a general difference in the composition of trace elements in the soil was not observed between the islands, apart from arsenic, which was increased at all three sampling sites on Vulcano. Element accumulation in the leaves differed between the two islands. The tested species showed a significant higher accumulation of numerous elements (Al, B, Fe, K, Mg, Mn, Ni, and Zn) on Vulcano compared to Lipari, while excluding Ca and Mo. These differences in element accumulation in the leaves between the islands may be caused by the lower soil pH on Vulcano. Extreme sulphur accumulation was found for all tested species on Vulcano, but was lower in woody species with higher dry matter content compared to herbaceous species with lower dry matter content. This caused a significantly negative correlation between plant sulphur and dry matter content. From these results, it is concluded that species with higher dry matter contents possess a more effective protection against extreme sulphur accumulation. Strategies to cope with other potentially toxic elements in the soil ranged from exclusion to hyper-accumulation. Hierarchical cluster analyses of the leaf element content revealed a clear separation between two groups: First, herbaceous perennial plants as strong accumulators; and second, woody perennial plants such as shrubs or trees as less strong accumulators, with the primordial species Fumaria capreolata representing an outside group

    Significance of current weather conditions for foliar traits of old-growth sessile oak (Quercus petraea Liebl) trees

    Get PDF
    The aim of the present study was to elucidate the significance of current weather conditions for foliar traits of adult sessile oak (Quercus petraea), one of the most valuable forest tree species in Central Europe. For this purpose, structural and functional traits were analysed in fully expanded, sun exposed leaves collected in south-west Germany from five old-growth forest stands, representing the meteorological and pedospheric conditions in the growing region, but differing in aridity during the 12 days before harvest in two consecutive years. Across the forest stands, most foliar traits differed significantly between wet and dry weather conditions before harvest as indicated by partial least square discriminant analysis (PLS-DA). These traits included fresh weight/dry weight ratio, leaf hydration, leaf-C content, leaf-C/N ratio, structural N, soluble protein-N, total amino acid-N, cell wall composition, numerous specific amino acids as well as soluble sugar content. Structural biomass, ÎŽ13C signature, total N and total C as well as H2O2 contents were not affected by the weather before harvest. These results indicate a high plasticity of the foliar metabolism of drought-tolerant sessile oak to current weather conditions. They also suggest that sessile oak is characterized by a high potential to cope with the growth conditions expected as a consequence of future climate change

    Nitrogen nutrition of trees in temperate forests-the significance of nitrogen availability in the pedosphere and atmosphere

    Get PDF
    Nitrogen (N) is an essential nutrient that is highly abundant as N2 in the atmosphere and also as various mineral and organic forms in soils. However, soil N bioavailability often limits the net primary productivity of unperturbed temperate forests with low atmospheric N input. This is because most soil N is part of polymeric organic matter, which requires microbial depolymerization and mineralization to render bioavailable N forms such as monomeric organic or mineral N. Despite this N limitation, many unfertilized forest ecosystems on marginal soil show relatively high productivity and N uptake comparable to agricultural systems. The present review article addresses the question of how this high N demand is met in temperate forest ecosystems. For this purpose, current knowledge on the distribution and fluxes of N in marginal forest soil and the regulation of N acquisition and distribution in trees are summarized. The related processes and fluxes under N limitation are compared with those of forests exposed to high N loads, where chronic atmospheric N deposition has relieved N limitation and caused N saturation. We conclude that soil microbial biomass is of decisive importance for nutrient retention and provision to trees both in high and low N ecosystems

    Effect of glucose on assimilatory sulphate reduction in Arabidopsis thaliana roots

    Get PDF
    With the aim of analysing the relative importance of sugar supply and nitrogen nutrition for the regulation of sulphate assimilation, the regulation of adenosine 5â€Č‐phosphosulphate reductase (APR), a key enzyme of sulphate reduction in plants, was studied. Glucose feeding experiments with Arabidopsis thaliana cultivated with and without a nitrogen source were performed. After a 38 h dark period, APR mRNA, protein, and enzymatic activity levels decreased dramatically in roots. The addition of 0.5% (w/v) glucose to the culture medium resulted in an increase of APR levels in roots (mRNA, protein and activity), comparable to those of plants kept under normal light conditions. Treatment of roots with d‐sorbitol or d‐mannitol did not increase APR activity, indicating that osmotic stress was not involved in APR regulation. The addition of O‐acetyl‐l‐serine (OAS) also quickly and transiently increased APR levels (mRNA, protein, and activity). Feeding plants with a combination of glucose and OAS resulted in a more than additive induction of APR activity. Contrary to nitrate reductase, APR was also increased by glucose in N‐deficient plants, indicating that this effect was independent of nitrate assimilation. [35S]‐sulphate feeding experiments showed that the addition of glucose to dark‐treated roots resulted in an increased incorporation of [35S] into thiols and proteins, which corresponded to the increased levels of APR activity. Under N‐deficient conditions, glucose also increased thiol labelling, but did not increase the incorporation of label into proteins. These results demonstrate that (i) exogenously supplied glucose can replace the function of photoassimilates in roots; (ii) APR is subject to co‐ordinated metabolic control by carbon metabolism; (iii) positive sugar signalling overrides negative signalling from nitrate assimilation in APR regulation. Furthermore, signals originating from nitrogen and carbon metabolism regulate APR synergisticall
    • 

    corecore