5 research outputs found

    Two distinct ubiquitin-binding motifs in A20 mediate its anti-inflammatory and cell-protective activities

    Get PDF
    Protein ubiquitination regulates protein stability and modulates the composition of signaling complexes. A20 is a negative regulator of inflammatory signaling, but the molecular mechanisms involved are ill understood. Here, we generated Tnfaip3 gene-targeted A20 mutant mice bearing inactivating mutations in the zinc finger 7 (ZnF7) and ZnF4 ubiquitin-binding domains, revealing that binding to polyubiquitin is essential for A20 to suppress inflammatory disease. We demonstrate that a functional ZnF7 domain was required for recruiting A20 to the tumor necrosis factor receptor 1 (TNFR1) signaling complex and to suppress inflammatory signaling and cell death. The combined inactivation of ZnF4 and ZnF7 phenocopied the postnatal lethality and severe multiorgan inflammation of A20-deficient mice. Conditional tissue-specific expression of mutant A20 further revealed the key role of ubiquitin-binding in myeloid and intestinal epithelial cells. Collectively, these results demonstrate that the anti-inflammatory and cytoprotective functions of A20 are largely dependent on its ubiquitin-binding properties. van Loo and colleagues provide insights into the action of the anti-inflammatory protein A20. The ZnF7 and ZnF4 ubiquitin-binding domains of A20 are both required to suppress inflammatory signaling and cell death; however, these zinc fingers operate via distinct mechanisms

    Canonical IRE1 function needed to sustain vigorous natural killer cell proliferation during viral infection

    Get PDF
    The unfolded protein response (UPR) aims to restore ER homeostasis under conditions of high protein folding load, a function primarily serving secretory cells. Additional, non-canonical UPR functions have recently been unraveled in immune cells. We addressed the function of the inositol-requiring enzyme 1 (IRE1) signaling branch of the UPR in NK cells in homeostasis and microbial challenge. Cell-intrinsic compound deficiency of IRE1 and its downstream transcription factor XBP1 in NKp46+ NK cells, did not affect basal NK cell homeostasis, or overall outcome of viral MCMV infection. However, mixed bone marrow chimeras revealed a competitive advantage in the proliferation of IRE1-sufficient Ly49H+ NK cells after viral infection. CITE-Seq analysis confirmed strong induction of IRE1 early upon infection, concomitant with the activation of a canonical UPR signature. Therefore, we conclude that IRE1/XBP1 activation is required during vigorous NK cell proliferation early upon viral infection, as part of a canonical UPR response.</p

    The UPR sensor IRE1α promotes dendritic cell responses to control Toxoplasma gondii infection

    No full text
    International audienceThe unfolded protein response (UPR) has emerged as a central regulator of immune cell responses in several pathologic contexts including infections. However, how intracellular residing pathogens modulate the UPR in dendritic cells (DCs) and thereby affect T cell-mediated immunity remains uncharacterized. Here, we demonstrate that infection of DCs with Toxoplasma gondii (T. gondii) triggers a unique UPR signature hallmarked by the MyD88-dependent activation of the IRE1α pathway and the inhibition of the ATF6 pathway. Induction of XBP1s controls pro-inflammatory cytokine secretion in infected DCs, while IRE1α promotes MHCI antigen presentation of secreted parasite antigens. In mice, infection leads to a specific activation of the IRE1α pathway, which is restricted to the cDC1 subset. Mice deficient for IRE1α and XBP1 in DCs display a severe susceptibility to T. gondii and succumb during the acute phase of the infection. This early mortality is correlated with increased parasite burden and a defect in splenic T-cell responses. Thus, we identify the IRE1α/XBP1s branch of the UPR as a key regulator of host defense upon T. gondii infection

    Nuanced role for dendritic cell intrinsic IRE1 RNase in the regulation of antitumor adaptive immunity

    No full text
    In cancer, activation of the IRE1/XBP1s axis of the unfolded protein response (UPR) promotes immunosuppression and tumor growth, by acting in cancer cells and tumor infiltrating immune cells. However, the role of IRE1/XBP1s in dendritic cells (DCs) in tumors, particularly in conventional type 1 DCs (cDC1s) which are cellular targets in immunotherapy, has not been fully elucidated. Here, we studied the role of IRE1/XBP1s in subcutaneous B16/B78 melanoma and MC38 tumors by generating loss-of-function models of IRE1 and/or XBP1s in DCs or in cDC1s. Data show that concomitant deletion of the RNase domain of IRE1 and XBP1s in DCs and cDC1s does not influence the kinetics of B16/B78 and MC38 tumor growth or the effector profile of tumor infiltrating T cells. A modest effect is observed in mice bearing single deletion of XBP1s in DCs, which showed slight acceleration of melanoma tumor growth and dysfunctional T cell responses, however, this effect was not recapitulated in animals lacking XBP1 only in cDC1s. Thus, evidence presented here argues against a general pro-tumorigenic role of the IRE1/XBP1s pathway in tumor associated DC subsets

    LXR signaling controls homeostatic dendritic cell maturation

    No full text
    Dendritic cells (DCs) mature in an immunogenic or tolerogenic manner depending on the context in which an antigen is perceived, preserving the balance between immunity and tolerance. Whereas the pathways driving immunogenic maturation in response to infectious insults are well-characterized, the signals that drive tolerogenic maturation during homeostasis are still poorly understood. We found that the engulfment of apoptotic cells triggered homeostatic maturation of conventional cDC1s within the spleen. This maturation process could be mimicked by engulfment of empty, non-adjuvanted lipid nanoparticles (LNPs), was marked by intracellular accumulation of cholesterol, and highly unique to type 1 DCs. Engulfment of either apoptotic cells or cholesterol-rich LNPs led to activation of the LXR pathway, which promotes the efflux of cellular cholesterol, and repressed genes associated with immunogenic maturation. In contrast, simultaneous engagement of TLR3 to mimic viral infection via administration of poly(I:C)-adjuvanted LNPs repressed the LXR pathway, thus delaying cellular cholesterol efflux and inducing genes that promote T cell-mediated immunity. These data demonstrate that conserved cellular cholesterol efflux pathways are differentially regulated in in tolerogenic versus immunogenic cDC1s and suggest that administration of non-adjuvanted cholesterol-rich LNPs may be an approach for inducing tolerogenic DC maturation
    corecore