416 research outputs found

    Blood pressure changes after renal denervation at 10 European expert centers

    Get PDF
    We did a subject-level meta-analysis of the changes (Δ) in blood pressure (BP) observed 3 and 6 months after renal denervation (RDN) at 10 European centers. Recruited patients (n=109; 46.8% women; mean age 58.2 years) had essential hypertension confirmed by ambulatory BP. From baseline to 6 months, treatment score declined slightly from 4.7 to 4.4 drugs per day. Systolic/diastolic BP fell by 17.6/7.1 mm Hg for office BP, and by 5.9/3.5, 6.2/3.4, and 4.4/2.5 mm Hg for 24-h, daytime and nighttime BP (P0.03 for all). In 47 patients with 3- and 6-month ambulatory measurements, systolic BP did not change between these two time points (P0.08). Normalization was a systolic BP of <140 mm Hg on office measurement or <130 mm Hg on 24-h monitoring and improvement was a fall of 10 mm Hg, irrespective of measurement technique. For office BP, at 6 months, normalization, improvement or no decrease occurred in 22.9, 59.6 and 22.9% of patients, respectively; for 24-h BP, these proportions were 14.7, 31.2 and 34.9%, respectively. Higher baseline BP predicted greater BP fall at follow-up; higher baseline serum creatinine was associated with lower probability of improvement of 24-h BP (odds ratio for 20-μmol l(-1) increase, 0.60; P=0.05) and higher probability of experiencing no BP decrease (OR, 1.66; P=0.01). In conclusion, BP responses to RDN include regression-to-the-mean and remain to be consolidated in randomized trials based on ambulatory BP monitoring. For now, RDN should remain the last resort in patients in whom all other ways to control BP failed, and it must be cautiously used in patients with renal impairment

    Directional atherectomy for treatment of restenosis within coronary stents: clinical, angiographic and histologic results

    Get PDF
    Abstract OBJECTIVES: The safety and long-term results of directional coronary atherectomy in stented coronary arteries were determined. In addition, tissue studies were performed to characterize the development of restenosis. METHODS: Directional coronary atherectomy was performed in restenosed stents in nine patients (10 procedures) 82 to 1,179 days after stenting. The tissue was assessed for histologic features of restenosis, smooth muscle cell phenotype, markers of cell proliferation and cell density. A control (no stenting) group consisted of 13 patients treated with directional coronary atherectomy for restenosis 14 to 597 days after coronary angioplasty, directional coronary atherectomy or laser intervention. RESULTS: Directional coronary atherectomy procedures within the stent were technically successful with results similar to those of the initial stenting procedure (2.31 +/- 0.38 vs. 2.44 +/- 0.35 mm). Of five patients with angiographic follow-up, three had restenosis requiring reintervention (surgery in two and repeat atherectomy followed by laser angioplasty in one). Intimal hyperplasia was identified in 80% of specimens after stenting and in 77% after coronary angioplasty or atherectomy. In three patients with stenting, 70% to 76% of the intimal cells showed morphologic features of a contractile phenotype by electron microscopy 47 to 185 days after coronary intervention. Evidence of ongoing proliferation (proliferating cell nuclear antigen antibody studies) was absent in all specimens studied. Although wide individual variability was present in the maximal cell density of the intimal hyperplasia, there was a trend toward a reduction in cell density over time. CONCLUSIONS: Although atherectomy is feasible for the treatment of restenosis in stented coronary arteries and initial results are excellent, recurrence of restenosis is common. Intimal hyperplasia is a nonspecific response to injury regardless of the device used and accounts for about 80% of cases of restenosis. Smooth muscle cell proliferation and phenotypic modulation toward a contractile phenotype are early events and largely completed by the time of clinical presentation of restenosis. Restenotic lesions may be predominantly cellular, matrix or a combination at a particular time after a coronary procedure

    Blood pressure response to renal denervation is correlated with baseline blood pressure variability: a patient-level meta-analysis

    Get PDF
    Background: Sympathetic tone is one of the main determinants of blood pressure (BP) variability and treatment-resistant hypertension. The aim of our study was to assess changes in BP variability after renal denervation (RDN). In addition, on an exploratory basis, we investigated whether baseline BP variability predicted the BP changes after RDN. Methods: We analyzed 24-h BP recordings obtained at baseline and 6 months after RDN in 167 treatmentresistant hypertension patients (40% women; age, 56.7 years; mean 24-h BP, 152/90 mmHg) recruited at 11 expert centers. BP variability was assessed by weighted SD [SD over time weighted for the time interval between consecutive readings (SDiw)], average real variability (ARV), coefficient of variation, and variability independent of the mean (VIM). Results: Mean office and 24-h BP fell by 15.4/6.6 and 5.5/ 3.7 mmHg, respectively (P < 0.001). In multivariable-adjusted analyses, systolic/diastolic SDiw and VIM for 24-h SBP/DBP decreased by 1.18/0.63 mmHg (P 0.01) and 0.86/0.42 mmHg (P 0.05), respectively, whereas no significant changes in ARV or coefficient of variation occurred. Furthermore, baseline SDiw (P ¼ 0.0006), ARV (P ¼ 0.01), and VIM (P ¼ 0.04) predicted the decrease in 24-h DBP but not 24-h SBP after RDN. Conclusion: RDN was associated with a decrease in BP variability independent of the BP level, suggesting that responders may derive benefits from the reduction in BP variability as well. Furthermore, baseline DBP variability estimates significantly correlated with mean DBP decrease after RDN. If confirmed in younger patients with less arterial damage, in the absence of the confounding effect of drugs and drug adherence, baseline BP variability may prove a good predictor of BP response to RDN

    Nonergodicity transitions in colloidal suspensions with attractive interactions

    Full text link
    The colloidal gel and glass transitions are investigated using the idealized mode coupling theory (MCT) for model systems characterized by short-range attractive interactions. Results are presented for the adhesive hard sphere and hard core attractive Yukawa systems. According to MCT, the former system shows a critical glass transition concentration that increases significantly with introduction of a weak attraction. For the latter attractive Yukawa system, MCT predicts low temperature nonergodic states that extend to the critical and subcritical region. Several features of the MCT nonergodicity transition in this system agree qualitatively with experimental observations on the colloidal gel transition, suggesting that the gel transition is caused by a low temperature extension of the glass transition. The range of the attraction is shown to govern the way the glass transition line traverses the phase diagram relative to the critical point, analogous to findings for the fluid-solid freezing transition.Comment: 11 pages, 7 figures; to be published in Phys. Rev. E (1 May 1999

    A tumor cord model for Doxorubicin delivery and dose optimization in solid tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Doxorubicin is a common anticancer agent used in the treatment of a number of neoplasms, with the lifetime dose limited due to the potential for cardiotoxocity. This has motivated efforts to develop optimal dosage regimes that maximize anti-tumor activity while minimizing cardiac toxicity, which is correlated with peak plasma concentration. Doxorubicin is characterized by poor penetration from tumoral vessels into the tumor mass, due to the highly irregular tumor vasculature. I model the delivery of a soluble drug from the vasculature to a solid tumor using a tumor cord model and examine the penetration of doxorubicin under different dosage regimes and tumor microenvironments.</p> <p>Methods</p> <p>A coupled ODE-PDE model is employed where drug is transported from the vasculature into a tumor cord domain according to the principle of solute transport. Within the tumor cord, extracellular drug diffuses and saturable pharmacokinetics govern uptake and efflux by cancer cells. Cancer cell death is also determined as a function of peak intracellular drug concentration.</p> <p>Results</p> <p>The model predicts that transport to the tumor cord from the vasculature is dominated by diffusive transport of free drug during the initial plasma drug distribution phase. I characterize the effect of all parameters describing the tumor microenvironment on drug delivery, and large intercapillary distance is predicted to be a major barrier to drug delivery. Comparing continuous drug infusion with bolus injection shows that the optimum infusion time depends upon the drug dose, with bolus injection best for low-dose therapy but short infusions better for high doses. Simulations of multiple treatments suggest that additional treatments have similar efficacy in terms of cell mortality, but drug penetration is limited. Moreover, fractionating a single large dose into several smaller doses slightly improves anti-tumor efficacy.</p> <p>Conclusion</p> <p>Drug infusion time has a significant effect on the spatial profile of cell mortality within tumor cord systems. Therefore, extending infusion times (up to 2 hours) and fractionating large doses are two strategies that may preserve or increase anti-tumor activity and reduce cardiotoxicity by decreasing peak plasma concentration. However, even under optimal conditions, doxorubicin may have limited delivery into advanced solid tumors.</p

    Use of imaging biomarkers to assess perfusion and glucose metabolism in the skeletal muscle of dystrophic mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Duchenne muscular dystrophy (DMD) is a severe neuromuscular disease that affects 1 in 3500 boys. The disease is characterized by progressive muscle degeneration that results from mutations in or loss of the cytoskeletal protein, dystrophin, from the glycoprotein membrane complex, thus increasing the susceptibility of contractile muscle to injury. To date, disease progression is typically assessed using invasive techniques such as muscle biopsies, and while there are recent reports of the use of magnetic resonance, ultrasound and optical imaging technologies to address the issue of disease progression and monitoring therapeutic intervention in dystrophic mice, our study aims to validate the use of imaging biomarkers (muscle perfusion and metabolism) in a longitudinal assessment of skeletal muscle degeneration/regeneration in two murine models of muscular dystrophy.</p> <p>Methods</p> <p>Wild-type (w.t.) and dystrophic mice (weakly-affected mdx mice that are characterized by a point mutation in dystrophin; severely-affected mdx:utrn-/- (udx) mice that lack functional dystrophin and are null for utrophin) were exercised three times a week for 30 minutes. To follow the progression of DMD, accumulation of <sup>18 </sup>F-FDG, a measure of glucose metabolism, in both wild-type and affected mice was measured with a small animal PET scanner (GE eXplore Vista). To assess changes in blood flow and blood volume in the hind limb skeletal muscle, mice were injected intravenously with a CT contrast agent, and imaged with a small animal CT scanner (GE eXplore Ultra).</p> <p>Results</p> <p>In hind limb skeletal muscle of both weakly-affected mdx mice and in severely-affected udx mice, we demonstrate an early, transient increase in both <sup>18</sup>F-FDG uptake, and in blood flow and blood volume. Histological analysis of H&E-stained tissue collected from parallel littermates demonstrates the presence of both inflammatory infiltrate and centrally-located nuclei, a classic hallmark of myofibrillar regeneration. In both groups of affected mice, the early transient response was succeeded by a progressive decline in muscle perfusion and metabolism; this was also evidenced histologically.</p> <p>Conclusions</p> <p>The present study demonstrates the utility of non-invasive imaging biomarkers in characterizing muscle degeneration/regeneration in murine models of DMD. These techniques may now provide a promising alternative for assessing both disease progression and the efficacy of new therapeutic treatments in patients.</p

    Homeostatic regulation of the endoneurial microenvironment during development, aging and in response to trauma, disease and toxic insult

    Get PDF
    The endoneurial microenvironment, delimited by the endothelium of endoneurial vessels and a multi-layered ensheathing perineurium, is a specialized milieu intérieur within which axons, associated Schwann cells and other resident cells of peripheral nerves function. The endothelium and perineurium restricts as well as regulates exchange of material between the endoneurial microenvironment and the surrounding extracellular space and thus is more appropriately described as a blood–nerve interface (BNI) rather than a blood–nerve barrier (BNB). Input to and output from the endoneurial microenvironment occurs via blood–nerve exchange and convective endoneurial fluid flow driven by a proximo-distal hydrostatic pressure gradient. The independent regulation of the endothelial and perineurial components of the BNI during development, aging and in response to trauma is consistent with homeostatic regulation of the endoneurial microenvironment. Pathophysiological alterations of the endoneurium in experimental allergic neuritis (EAN), and diabetic and lead neuropathy are considered to be perturbations of endoneurial homeostasis. The interactions of Schwann cells, axons, macrophages, and mast cells via cell–cell and cell–matrix signaling regulate the permeability of this interface. A greater knowledge of the dynamic nature of tight junctions and the factors that induce and/or modulate these key elements of the BNI will increase our understanding of peripheral nerve disorders as well as stimulate the development of therapeutic strategies to treat these disorders
    corecore