23 research outputs found

    A Renormalization Group for Dynamical Triangulations in Arbitrary Dimensions

    Get PDF
    A block spin renormalization group approach is proposed for the dynamical triangulation formulation of quantum gravity in arbitrary dimensions. Renormalization group flow diagrams are presented for the three-dimensional and four-dimensional theories near their respective transitions.Comment: 18 pages, 6 postscript figures, revte

    Non-Perturbative Renormalization Group Flows in Two-Dimensional Quantum Gravity

    Get PDF
    Recently a block spin renormalization group approach was proposed for the dynamical triangulation formulation of two-dimensional quantum gravity. We use this approach to examine non-perturbatively a particular class of higher derivative actions for pure gravity.Comment: 17 page

    Three-Dimensional Quantum Gravity Coupled to Gauge Fields

    Get PDF
    We show how to simulate U(1) gauge fields coupled to three-dimensional quantum gravity and then examine the phase diagram of this system. Quenched mean field theory suggests that a transition separates confined and deconfined phases (for the gauge matter) in both the negative curvature phase and the positive curvature phase of the quantum gravity, but numerical simulations find no evidence for such transitions.Comment: 16 page

    Phase Structure of Dynamical Triangulation Models in Three Dimensions

    Get PDF
    The dynamical triangulation model of three-dimensional quantum gravity is shown to have a line of transitions in an expanded phase diagram which includes a coupling mu to the order of the vertices. Monte Carlo renormalization group and finite size scaling techniques are used to locate and characterize this line. Our results indicate that for mu < mu1 ~ -1.0 the model is always in a crumpled phase independent of the value of the curvature coupling. For mu < 0 the results are in agreement with an approximate mean field treatment. We find evidence that this line corresponds to first order transitions extending to positive mu. However, the behavior appears to change for mu > mu2 ~ 2-4. The simplest scenario that is consistent with the data is the existence of a critical end point

    Numerical Study of c\u3e1 Matter Coupled to Quantum Gravity

    Get PDF
    We present the results of a numerical simulation aimed at understanding the nature of the `c = 1 barrier\u27 in two dimensional quantum gravity. We study multiple Ising models living on dynamical \phi^3 graphs and analyse the behaviour of moments of the graph loop distribution. We notice a universality at work as the average properties of typical graphs from the ensemble are determined only by the central charge. We further argue that the qualitative nature of these results can be understood from considering the effect of fluctuations about a mean field solution in the Ising sector

    Nonperturbative Renormalization-Group Flows In 2-Dimensional Quantum-Gravity

    Get PDF
    Recently a block spin renormalization group approach was proposed for the dynamical triangulation formulation of two-dimensional quantum gravity. We use this approach to examine non-perturbatively a particular class of higher derivative actions for pure gravity

    Scaling Behavior Of The Ising-Model Coupled To 2-Dimensional Quantum-Gravity

    Get PDF
    We study the Ising model on dynamical phi(3) graphs with spherical topology. A finite-size scaling analysis is carried out both with and without an external field leading to numerical estimates for various critical exponents which are in good agreement with analytical calculations. We further determine the equation of state, and measure the correlation of Ising spins on the ensemble of graphs

    Three Dimensional Quantum Gravity Coupled to Ising Matter

    Get PDF
    We establish the phase diagram of three--dimensional quantum gravity coupled to Ising matter. We find that in the negative curvature phase of the quantum gravity there is no disordered phase for ferromagnetic Ising matter because the coordination number of the sites diverges. In the positive curvature phase of the quantum gravity there is evidence for two spin phases with a first order transition between them.Comment: 12 page

    Numerical Study of c>1 Matter Coupled to Quantum Gravity

    Full text link
    We present the results of a numerical simulation aimed at understanding the nature of the `c = 1 barrier' in two dimensional quantum gravity. We study multiple Ising models living on dynamical Ď•3\phi^3 graphs and analyse the behaviour of moments of the graph loop distribution. We notice a universality at work as the average properties of typical graphs from the ensemble are determined only by the central charge. We further argue that the qualitative nature of these results can be understood from considering the effect of fluctuations about a mean field solution in the Ising sector.Comment: 12 page

    The Block Spin Renormalization Group Approach and Two-Dimensional Quantum Gravity

    Get PDF
    A block spin renormalization group approach is proposed for the dynamical triangulation formulation of two-dimensional quantum gravity. The idea is to update link flips on the block lattice in response to link flips on the original lattice. Just as the connectivity of the original lattice is meant to be a lattice representation of the metric, the block links are determined in such a way that the connectivity of the block lattice represents a block metric. As an illustration, this approach is applied to the Ising model coupled to two-dimensional quantum gravity. The correct critical coupling is reproduced, but the critical exponent is obscured by unusually large finite size effects.Comment: 10 page
    corecore