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Scaling behavior of the Ising model coupled to two-dimensional quantum gravity

S. M. Catterall and J. B. Kogut
Loomis Laboratory of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801

R. L. Renken
University of Central Florida, Orlando, Florida 32816
(Received 21 November 1991)

We study the Ising model on dynamical ¢* graphs with spherical topology. A finite-size scaling
analysis is carried out both with and without an external field leading to numerical estimates for various
critical exponents which are in good agreement with analytical calculations. We further determine the
equation of state, and measure the correlation of Ising spins on the ensemble of graphs.

PACS number(s): 11.15.Ha, 11.17.+y, 64.60.Fr

I. INTRODUCTION AND MODEL

String theory in a Euclidean space can be thought of as
a theory of free bosons coupled to two-dimensional quan-
tum gravity. While classically the dimension of the
embedding space is a free parameter, the quantum theory
is only tractable analytically in the critical dimension
D =26 where the gravity sector effectively decouples. To
try to analyze the structure of the subcritical theory vari-
ous authors [1,2,3] have proposed the use of a regulated
model based on dynamically triangulated random sur-
faces. It is natural to try to extend this to the case of fer-
mionic strings, i.e., to add anticommuting degrees of free-
dom to the discretized world sheet. It is well known that
the Ising model on an arbitrary random graph is
equivalent in the critical region to a Majorana fermion
[4]. We are thus motivated to consider the partition
function of an Ising model coupled to (discrete) quantum
gravity,

Z= 2 zeS(J,H) ,

Gy o;

S§S=J ¥ o,0;+H 3 0, .
{ij) i

The numerical results we shall describe here were con-
cerned with the application of careful finite-size scaling
techniques to this model to locate the onset of a scaling
regime, and to subsequently extract reliable estimates for
certain critical exponents. While previous numerical ap-
proaches have utilized a triangulated lattice and worked
only in the limit when H =0, we were able to test univer-
sality by working on the dual lattice and at nonzero field.
This allowed a first measurement of the magnetic ex-
ponent & and a determination of the equation of state. By
providing extensive tables of data, we hope our results
will, in addition, be of use to others working on related
systems. We also attempt the first numerical or analyti-
cal determination of the correlation-length exponent
governing the behavior of the two-point function on the
ensemble of graphs.

We have employed a microcanonical ensemble where
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the number of vertices N is held fixed. By allowing two
loops in a graph to have at most one link in common we
have eliminated all degeneracies associated with tadpoles
and self-energy insertions. We further confine ourselves
to graphs with the topology of the sphere. Since our
prime interest will be a numerical measurement of the
critical exponents, which are independent of genus, this is
not an important restriction. A simple Metropolis algo-
rithm is used to implement changes in the Ising spins and
local reconnections of the ¢ graph. For details of the
vector program we use to generate configurations we
refer the reader to [5].

The model has been solved analytically by exploiting
its equivalence to a large-N matrix model [6]. The system
undergoes a third-order phase transition (in zero field H)
between a low- and high-temperature (small J) phase
with a set of critical exponents which differ markedly
from their values on a fixed lattice. It came as a surprise,
therefore, when a numerical study of this model by Gross
et al. [7] produced only the fixed lattice exponents.
However, in this case the authors used a Regge approach
for simulating the gravity sector.

Since this model is one of the few which admit an exact
solution, it serves as an important testing ground for our
numerical techniques. Specifically, how well do our
Monte Carlo simulations, which attempt to estimate the
summation over graphs, produce exponents in agreement
with the analytical prediction? The results of such a
study allow us to tune the algorithms and give us
confidence in interpreting the numerical results from oth-
er models where analytic solution is not possible.

Borrowing traditional ideas from statistical mechanics
we will primarily be interested in studying the finite-size
behavior of various quantities close to the infinite-lattice
critical coupling J, =1In(108/23). A precise knowledge
of J, eliminates a huge source of error in the analysis of
the finite-lattice data. One further difficulty arises in ap-
plying these standard techniques: the necessity of ex-
tracting a linear scale L for these dynamical systems.
This we do by setting

L~N'Y?.
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The exponent d is an intrinsic Hausdorff dimension
characterizing the internal geometry of the graph. The
finite-size scaling ansatz requires any thermodynamic
function Q, measured on a finite lattice close to criticali-
ty, to be given by some scaling form [8]

Q(J,N)=N*"Vf(eN'/¥) .

The quantity €=|1—J,/J| measures the deviation away
from the infinite-lattice critical point. The argument of
the function f is essentially the ratio of the correlation
length to the linear size of the system. The exponents x
and v are defined from the infinite-lattice singularities of
Q and the correlation length &:

QW) ~(J—J,)7*,
EN)~(T—J)7".

Notice that the ratio x /vd can be measured by setting
€=0, i.e., J=J, and analyzing the N dependence of Q

QW ,N)~fON*/

In order that we recover the infinite-lattice result Q ~e™ *

as N-— o, the scaling function f(z) must have the
asymptotic behavior

flz)~z7*.

Thus a measurement of the limiting behavior of the scal-
ing function also allows a determination of critical ex-
ponents. We have considered two primary observables,
the magnetization M with exponent B and the susceptibil-
ity ¥ with corresponding exponent y:

M=iza,., M~(J—J.)",
N i

X=NU{M?)—(M)?), x~(J—J,)7".

Using the results of the previous discussion we have at-
tempted to derive estimates for ratios of the critical ex-
ponents B/vd and y /vd. To help reduce some of the tun-
neling effects on finite lattices for J >J_. we have replaced
M by |M|. In addition we have studied the magnetic ex-
ponent § defined through

MI/B
T—7)

M =H1/8g

If we run at J =J, then & can be extracted from

M~H1/5 .

II. RESULTS

A. Finite-size scaling and critical indices

We have run on lattices with sizes N=200 up to a
maximum of N =3000 sites, accumulating up to 3X 10’
vector sweeps (a vector sweep in this context attempts to
update 20 independent lattice sites and 20 links). Errors
are estimated by the usual binning procedure where we
demand a plateau in the 20—40 bin region and the suscep-
tibility to agree with its binned average within one stan-
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TABLE I. x and M are listed as a function of N for J=J,.
The number of Monte Carlo sweeps used in the calculations is
also given.

N M X Sweeps

200 0.69(1) 14.2(8) 1Xx108

500 0.59(1) 33(2) 6X10°
1000 0.52(2) 68(4) 1.6X 10’
1500 0.49(2) 94(5) 1.6Xx 10’
2000 0.49(2) 108(8) 2.4%x10’
3000 0.47(2) 134(13) 6% 107

dard deviation. As we have argued, ratios of exponents
can be extracted from the asymptotic N dependence of
observables at the critical coupling J.. We illustrate this
in Fig. 1 (Table I) with a plot of Iny versus InN at J=J,.
It is clear that the scaling regime only sets in at N = 1000,
and a fit to the last four data points gives us the estimate

Y =0.6(1), ¥*=0.17.
vd

This is in good agreement with the exact result
v/vd=2/3 and essentially excludes the fixed-lattice
number y/vd=7/8 at three standard deviations. The
exponent 3 describing the critical behavior of the magne-
tization is, in principle, more difficult to extract, the
singular terms vanishing as N — o0:

M~N~B/

Nevertheless our log-log plot of M against N (Fig. 2) ad-
mits a reasonable linear fit on the six points and gives

£=o.16(1), x*=0.33 .
vd

While this number precisely coincides with the exact re-
sult for a dynamical lattice ¥ /vd =1/6, fitting on subsets
of the data points yield numbers differing by several stan-
dard deviations. This is caused, at least in part, by the
onset of critical slowing down on the larger lattices.
Therefore the effective error is probably larger than that

]
2
>
=
=8
L]
o
2]
.
o
~ T T T 1
S 6 7 9
InN
FIG. 1. Iny vs InN (J=J,), N=200, N=500,

N=1000, N=1500, N=2000, N=3000.



45 SCALING BEHAVIOR OF THE ISING MODEL COUPLED TO ...

InM

InN

FIG. 2. InM vs InN (J=J,), same lattice sizes as above.

quoted above. However, it is certainly very difficult to
come up with a fit which is close to the fixed (regular) lat-
tice result of B/vd =1/16. Thus our data, at the very
least, exclude such a result and favor the dynamical ex-
ponent. Both of these two results are in agreement with
an earlier study [9] on triangulated lattices.

To measure the exponent § we ran on three lattice sizes
N =200, N =500, and N = 1000 with J=J_ and the addi-
tion of a small magnetic field H (Table II). Figure 3
shows a plot of InM against InH for N =200. At large
magnetic field the system is moved out of the critical re-
gion and the magnetization saturates. Conversely if the
field H is too small finite-size effects dominate and again
the magnetization approaches a plateau. Thus the scal-
ing region corresponds to intermediate fields where InM
should have a linear dependence on InH. We see such a
window for 0.0075 < H <0.015. A fit gives us an esti-
mate 1/8=0.14(2), with a xy*=0.5. In principle, this
scaling window should broaden on larger lattices and
indeed the data for N =500 (Fig. 4) illustrate this with
the fitting region extending from H=0.01 down to
H=0.002. A linear fit yields 1/86=0.16(1), with a
x*=1.0. This trend continues at N=1000 where our
data show (Fig. 5), very convincingly, a linear regime ex-
tending to small magnetic field. A fit here gives us our
best estimate for the exponent

TABLE II. M as a function of H at J=J, for several lattice
sizes.

H M (N=200) M (N=500) M (N=1000)
0.1 0.951(1)

0.05 0.915(3) 0.919(7)

0.02 0.861(8) 0.861(2) 0.860(2)
0.015 0.816(4) 0.835(3) 0.860(2)
0.01 0.77(1) 0.795(8) 0.807(5)
0.0075 0.748(6) 0.783(7) 0.781(4)
0.006 0.74(1) 0.754(7)
0.005 0.71(1) 0.71(1) 0.73(1)
0.004 0.71(1)
0.003 0.704(7) 0.67(2) 0.67(1)
0.002 0.62(1) 0.615(9)
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FIG. 3. InM vs InH for N=200at J=J..

=0.18(2), x2=0.09 .

o |-

This is in excellent agreement with the analytic result
1/6=1/5 and the trend with N shows no sign of running
to the fixed-lattice result 1/6=1/15.

Our results thus are generally in good agreement with
the analytical results for models with dynamical connec-
tivity and specifically rule out the fixed-lattice exponents.
This provides some reassurance that the numerical tech-
niques for summing over triangulations are satisfactory.
The fact that scaling sets in for N ~ 1000 is encouraging
for the interpretation of results from such models with
extrinsic curvature [5,10] and is in stark contrast to the
case of pure two-dimensional gravity, where it is claimed
[11] that far larger systems are needed to probe the con-
tinuum behavior.

B. Scaling functions and equation of state

To attempt a self-consistent check on our results we
have constructed finite-size scaling plots for both the sus-
ceptibility and magnetization. In Fig. 6 we plot
In(yN ~7/*?) against In(x) with x =eN'”*¥ for N =500,

InM

InH

FIG. 4. InM vs InH for N=500 at J=J..
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FIG. 5. InM vs InH for N=1000 at J=J,.

N=1000, and N =1500, assuming the exponents vd, y
take the dynamical lattice values. The data are summa-
rized in Tables III-V. The collapse of the data onto a
single curve is indicative of scaling. The slight deviations
visible for the N =500 data at small x are compatible
with our earlier conclusions—that the scaling regime for
x sets in around N =~1000. The scaling function f(x) is
expected to behave asymptotically as

flx)~x"7.

In principle we can extract an estimate for y by examin-
ing the gradient of the plot at large x. The linear fit
shown in the figure yields y=1.4(1) with a x¥?=3.0,
which is somewhat different from the analytic prediction
vy =2. However, with the lattice sizes we have con-
sidered, we are only about to go to x ~3.0, which is too
small to really probe the limiting behavior. The numeri-
cal evidence points to an increase in y with lattice size,
but clearly from this plot alone one cannot distinguish
the fixed (y=7) from dynamical exponent. The
equivalent plot for the magnetization In(M?/*9) against
In(x) is shown in Fig. 7. The two branches correspond to

o]

Ing

FIG. 6. YN?/*? vs x=eN'/*, Lattice sizes correspond to
N =500, 1000, 1500.
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TABLE III. Scaling variables MN'/¢ and YN ~2/3 as a func-
tion of B. N =500, the external field is zero, and six million
sweeps were used per data point.

B MNl/6 XN —2/3
0.5881 0.455(4) 0.113(2)
0.6177 0.535(3) 0.149(2)
0.6504 0.665(8) 0.208(5)
0.6868 0.86(1) 0.328(6)
0.7275 1.21(2) 0.460(6)
0.733 1.66(4) 0.53(3)
0.8253 2.14(6) 0.42(4)
0.8848 2.50(4) 0.20(5)
0.9535 2.67(1) 0.06(2)
1.0338 2.70(5) 0.06(5)
1.1289 2.792(2) 0.0024(1)

TABLE IV. Scaling variables MN'/® and YN ~2/3 as a func-
tion of 8. N=1000, and the external field is zero. For 8<f,,
six million sweeps were used per point. For 8> 3., ten million
sweeps were used.

ﬁ MN 1/6 XN -2/3
0.6065 0.403(4) 0.090(2)
0.6313 0.464(8) 0.117(3)
0.6581 0.550(8) 0.159(4)
0.6874 0.73(2) 0.260(8)
0.7193 0.96(3) 0.38(2)
0.7544 1.46(5) 0.57(2)
0.7931 1.95(6) 0.57(5)
0.8360 2.50(7) 0.36(7)
0.8838 2.85(3) 0.095(3)
0.9373 2.8(1) 0.17(1)
0.9978 3.067(6) 0.009(2)

TABLE V. Scaling variables MN'/® and yN ~%/* as a func-
tion of B. N=1500, and the external field is zero. Twelve mil-
lion sweeps were used per data point.

B MN1/6 XN —2/3
0.6213 0.382(7) 0.083(3)
0.6890 0.65(2) 0.214(9)
0.7228 0.94(2) 0.39(1)
0.7472 1.265(6) 0.545(2)
0.7600 1.43(7) 0.61(3)
0.8161 2.39(1) 0.58(9)
0.8639 2.77(8) 0.23(4)

TABLE VI. Equation of state data.

H/e? M /€'?
1.002 0.95(3)
0.4009 0.69(2)
2.7582 1.60(4)
1.1033 1.23(2)

15.665 3.10(5)
6.2662 2.3(1)

87.9044 4.96(5)

35.1618 4.1(1)

32.0716 3.80(5)

12.8287 3.0(1)
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FIG. 7. MN#?/*? against x. Same lattice sizes as above.

the cases J <J,. (lower curve) and J >J, (upper curve).
Again, we have observed earlier, a scaling behavior for
the magnetization seems to set in on lattices with only
N =500 nodes (at least in the high-temperature J <J, re-
gion). A linear fit of the upper branch from x ~1.0 on-
wards allows a measurement of 3, i.e.,

fx)~xP, x—>ow .

The N=1000 data yield B=0.25(10) with a y*>=2.8.
Furthermore the fits for this exponent yield systematical-
ly larger values as N increases. Thus, although we cannot
reach large enough x where the fits become stable, the
trend in our data would favor the dynamical exponent
B=1 rather than its much smaller value on the fixed lat-
tice B= 1.

To summarize, we see good evidence for scaling in the
finite-size scaling plots and fits to the large-x regime yield
further estimates for the exponents 8 and y which are
compatible with the exact results.

We have also attempted to determine the equation of
state

<
2]
Q
w
\O
§ n -
L
3 Y
- .
L]
81
-
=1
—le
]
T T T T 1
o 20 40 60 80 100
H/ePo

FIG. 8. Equation of state H /€ vs M /€?, N =1000.
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TABLE VII. m vs J for N=1000.

J m

0.50 0.55(2)
0.55 0.42(1)
0.60 0.37(1)
0.65 0.271(4)
0.675 0.234(3)
0.70 0.195(3)
0.725 0.161(2)
0.80 0.128(7)

H M

Ao | y ] |

Using a lattice with N =1000 nodes, we determined the
magnetization in a scaling region corresponding to small
deviations away from the critical point €é=0.02-0.12 and
small magnetic fields H=0.002-0.005. A plot of H /e®
against the scaled magnetization M /€? (Fig. 8, Table VI)
shows that the data collapse onto a smooth curve which
constitutes a nonperturbative measurement of the func-
tion ®.

C. Internal geometry

Finally we have attempted to extract an estimate for
the correlation-length exponent v by a direct measure-
ment of the connected two-point function on the graph.
Using a simple algorithm we can construct a map of the
intrinsic distance of all points on any particular graph
from some reference site. Each lattice link is assinged
unit length and the distance between two sites defined as
the minimal walk on the graph which connects the two
sites. With this information we then form an estimate for
the correlator G (r) by averaging over the ensemble of
graphs and spin configurations as follows:

1 .
G(r)=<m gaoaia(d(z)—r)>—<a[>2 ,

n(r)= 3 6(d(i)—r) .

o
oY
L]
—~ A
& * J =0.65, N = 1000
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- L]
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L]
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%_ L] . ° L]
. L]
L]

(=] ® *

© -

[]

2

@
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T

FIG.9. InG(r) vs r at J=0.65 with N =1000.
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FIG. 10. Mass gap m as a function of coupling J for
N =1000.

The vector d (i) contains the distance on the graph from
site i to the origin i,. The mass gap is defined from the
asymptotic behavior of G:

G(r)~exp(—m(J)r),

r— o0 .,

A typical graph of the natural log of the correlation func-
tion at J =0.65 on a 1000-node lattice is shown in Fig. 9.
The linearity of the plot out to lattice distances of order
15 (where the signal is lost in the noise) indicates the
dominant contribution of a single state. The fitted masses
are shown in Table VII and plotted out as a function of J
in Fig. 10. A fit of these data to the form a +b(J,—J)”
yields the estimates a =0.104(9), b=1.9(2), v=1.15(8)
with a Y?=1.6. Our data are thus compatible with an ex-
ponent of unity, similar to that observed on a fixed lat-
tice. Theory only provides us with the product vd =3, so
our data would favor an internal Hausdorff dimension
d ~3 (notice that this is a purely intrinsic quantity, in-
dependent of any “external” Hausdorff dimension associ-
ated with embedding the string in some Euclidean space).
However it is possible, in principle, to measure d directly
by counting the number of lattice sites as a function of
distance. Unfortunately we found that d was essentially
independent of the Ising coupling J and close to its classi-
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cal value d =2. We interpret this as evidence that the lat-
tices in this study were simply too small to allow for the
direct measurement of such nonlocal functions of the
geometry as the Hausdorff dimension (see, for example,
[11]). Conversely, critical exponents for the Ising sector,
being determined by the physics at small scales, may be
extracted much more readily.

III. SUMMARY

In this paper we have presented results of finite-size
scaling studies of the Ising model on dynamical ¢3
graphs. The data show strong evidence for scaling on
moderate lattice sizes (N ~1000), and yield estimates for
various critical exponents which are consistent with the
results of matrix-model calculations. Our results rule out
the fixed-lattice exponents which have been favored by a
recent numerical study [7]. We have, in addition, deter-
mined the equation of state for the system and analyzed
the intrinsic correlations of Ising spins on the graph. The
latter leads to an estimate for the correlation exponent v.

These conclusions are important for the interpretation
of other numerical results concerning matter fields
(perhaps with ¢ >1) coupled to two-dimensional quan-
tum gravity. It would be interesting to extend this
analysis to models incorporating further Ising species, in
an effort to go continuously through the so-called ¢ =1
barrier. It would be highly instructive to find a strong
signal of some sort of pathological behavior as the num-
ber of Ising species is increased from two to three. Such
a signal has been conspicuously lacking in the Gaussian
models which have been considered previously; see, e.g.,
[12].
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