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Abstract 

Recently a block spin renormalization group approach was proposed for the dynamical triangulation formulation of two- 
dimensional quantum gravity. We LX this approach to examine non-perturbatively a particular class of higher derivative actions 
for pure gravity. 

1. Introduction 

Dynamically triangulated random surfaces provide 
a lattice representation of two-dimensional quantum 
gravity [ 1,2]. Both in the continuum and on a srmpli- 
cial lattice the usual Einstein action based CA: tine Ricci 
scalar is a topological invariant. Thus the simplest 
action for the iaitice theory at fixed volume and genus 
can then be taken as zero. 

In principle, it is possible to add other operators to 
this lattice action which are consistent with the u&r- 
lying symmetries of the model. -here reparan!ztrizatio,l 
invariance. The lattice action would then take the form 
S= Ci @iOi where (Oi) are a set of generic operators 
with associated coupling constants ( j3,). For example, 
it is natural to consider operators which are the lattice 
analogues of higher dkrivative terms - integrals of pow- 
ers of the scalar curvature. In general these actions may 
then possess one or more critical points { E) in the 
coupling constant space where it may be irossible to 
construct continuum IimiL for the model. 

The usual theory of two-dimensional quantum grav- 
ity is constructed about the special point pi = 0. Pertur- 
bation theory then indicates that the higher operaton 
are all irrelevant in the renormalization group sense - 
that is the long distance continuum physics of models 
with pi non-zero is identical to that at the fixed point 
&=O. Unfortunately, perturbation theory can tell us 
nothing, in principle, about the existence and properties 
of other fixed points situated in regions of the parameter 
space where any of the Pi are not small. To probe such 
regions a nonperturbative procedure is required. For 
conventional statistical mechanical models the block 
spin renormalization group is one such technique [ 31. 
In this technique, a local kernel is used to construct an 
effective theory with a carefully controlled change of 
scale which allows the calculation of critical couplings 
aud critical exponents. 

Such a block spin formalism has recently beendevel- 
oped for dynamical triangulations and applied to two- 
dimensional quantum gravity coupled to Ising spins 
i4]. In contrast, a heuristic renormalization group 
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inspired approach has been advocated in [ 51. In this 
paper, we apply the block spin renormalization group 
approach to pure quantum gravity. The aim is to explore 
the fixed point structure of the lattice model when a 
particular class of higher derivative operator is included 
in the action. Specifically, we use an action S= a X 
Xi ln( qi) where qi is the coordination number of a site. 
Such a term consists of an infinite series of powers of 
the curvature and arises naturally when we couple the 
theory to scalar fields. We show that the approach does 
indeed yield an appropriate fixed point and present 
results which give strong evidence for the nonpertur- 
burioe irrelevance of such higher order curvature temls. 

2. Block spin renormalization group 

The details of the algorithm are given in [ 41. Here, 
we just summarize the approach. The traditional way 
of implementing the renormalization group within a 
numerical simulation is to generate a sequence of lattice 
field configurations which are distributed according to 
the usual Boltzmann weight. Each of these is then pro- 
gressively coarsened in some way which preserves the 
long distance physics. Corresponding to each initial 
fine lattice configuration a succession of “blocked” 
lattices is thus generated. Typically, the fields on each 
“blocked” lattice are determined by the fields of the 
lattice at one iess blocking level. By examining the 
flows of expectation values of a set of operators and 
their correlators as a function of blccking level, it is 
then possible to extract the critical couplings and ctit- 
ical exponents. 

The choice of an apt “blocking” transformation is 
a very important issue. For the case of random trian- 
gulations, the lattice itse!f is the dynamical object. WC 
thus require an algorithm for replacing a given random 
mesh with a succession of coarsened descendants with 
approximately the same long distance features. The 
most natural way to measure distance in this context is 
by defining all lattice links to have length unity. The 
distance between airy two points is then taken as the 
gendesic length between them - the length (in lattice 
units) tif the shortest pa:h connecting them on the lat- 
tice. 

In order for the blocking algorithm to be apt it must 
be able to replace a given mesh by one with a subset of 
the nodes triangulated in such a way that the rclatioe 

lengths of blockedgeodesics reflect the under&ing geo- 
desic structure. That is. like a metric, the blocked tri- 
angulation tells us which points are near and which are 
far apart and this must accurately reflect the situation 
on the underlying lattice. It appears tobc a hard problem 
to give a rule which when applied to an arbitrary ran- 
dom lattice accomplishes this task. Cur method, how- 
ever. relies on a simple, local, iterative procedure to 
generate the coarsened lattices. 

Suppose, by some method, it has been possible to 
generate a set of blockings of a given triangulation. In 
order to generate a Monte Carlo sample, the fine lattice 
(blocking level zero) is then updated using the sto- 
chastic link flip algorithm. In order that the coarsened 
lattices reflect the new fine lattice it is necessary to 
perform blocklinkflipsaccording tosomesuitablerule. 
This rule then ensures that they “follow” the parent 
lattice as it is updated. Denote a generic lattice at block- 
ing level k by TL and its successor at level k + 1 by Tk + , . 
Thus, any rule which specifies when to Rip links in Tk 
in response to flips of the links in T,-, provides a 
definition of the blocking transformation. An apt rule 
appears to be to flip a block link in T, whenever that 
would connect two points that are closer (on the lattice 
Tk- i) than the two currently linked. This process is 
iterated recursively to generate a tower of blocked lat- 
tices for each fine lattice. This block rule ensures that 
a given block lattice is determined from its “parent” 
at one less blocking level in such a way that the relative 
distance of blocked nodes is preserved. 

There are two convenient ways to choose the original 
lattice and its blocked form. One is to start with a 
regular lattice and to choose distinct subsets of points 
(those corresponding to a usual square lattice block- 
ing) that can obviously be triangulated in aregular way. 
The other is to start with a triangulation that is viewed 
as the block lattice and to add as many points as desired 
:o I reduce the bare lattice. IJpdating the block lattice 
wita a number of block link sweeps then relaxes the 
block lattice. 

The Monte Carlo cycle thus begins with an update 
sweep of the fine lattice followed by a number of appli- 
cations of the block link update rule (typically five to 
ten block link sweeps) at each blocking level. 

Any expectation values computed on a blocked lat- 
tice can be viewed as coming from an effective action. 
There is a sequence of effective actions :hat corre- 
sponds to the sequence of blocking levels. If the orig- 
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Table I 
Expectation values of seven operators at all blocking levels beginning with a 2704 node lattice 

OF itor n 

0 I 2 3 4 

01 1.499(i) 4.99(5) 4.33(6) 1.)2(S) - 0.367(7) 

07 2.61 I(2) 6.68(5) 8.3(2) 4.2(l) 0.35(2) 

03 -4.63(2) 10.9(S) -31) O(l) 0.19(8) 

04 3.500(l) S.Ol(2) 5.42( 8) 3.91(6) 0.70( I ) 

03 22.25(2) 56.5(8) 70( 3) 26(l) -0.58(3) 

06 328.7( 7) MQO(30) 1900(200) 370( 20) 3.8(l) 

4 29.87(3) 35.2(2) 28.8(4) 17.4(2) 7.89(l) 

The action is zero. 

inal action is critical (and if the renormalization group 
transformation is apt), this sequence converges to a 
fixed point. Such should be the case for dynamical 
triangulations with action equal to zero. Such should 
also be the case if any irrelevant term is added to the 
action. In this case, the sequence should converge, not 
just to any fixed point, but to the same fixed point 
obtained without the irrelevant terms. 

In practice, although the effective actions converge 
to a fixed point when the theory is critical, the expec- 
tation values obtained on the block lattices do not. This 
is because each renormalization group transformation 
reduces the size of the lattice and hence increases the 
finite size effects. A single sequence of blocking levels 
with their corresponding expectation values will not 
display convergence toward a fixed point. However, 
two sequences, beginning with bare latticesofdifferent 
volumes can do this. The trick is to choose the bare 
lattice of one of the sequences to have the same volume 

Table 2 
The expectation value of the seven operators on two lattices which 
have been blocked three and four times, respectively 

V 

2304 s7ti 

-0.367(7) -0.363(j) 
0.35(2) 0.34 I) 
0.19(R) 0.27(4) 
0.70( I ) 0.677( 5) 

--O.SH(3) -0.m I ) 
3.X( I ) 3.54(S) 
7.(19( I ) 7.881(6) 

The original volumes were chosen so that the final blocked lattices 
have the same number of nodes (nine). 

as the first blocked level of the other sequence. In this 
way, expctation values can be comp;?red on lattices 
with the same volume (and therefore the same Ignite 
size effects) but with different numbers of iterations of 
the renormalization group transformation. Since the 
finite size effects are identical, any difference in expec- 
tation values can only be due to adifference in effective 
actions As the renormalization group transformation 
is iterated and the actions flow toward a fixed point, the 
difference in effective actions should rapidly decrease 
yielding a progressively smaller difference in expec- 
tation values. 

3. Results 

Our first goal, then, is to implement t!te block spin 
renormalization group transformation described Above 
on dynamical triangulations with an action equal to zero 
and to see if the matching procedure just outlined pro- 
duces pairs of expectation values that are increasingly 
close as the blocking level is increased. Seven operators 
arc used in this study. The first six are all powers or 
correlations of the coordination number at a site (qi) 
minus six (i!s flat-space, regular lattice value) and are 
all normalized by the number of links. The first is the 
nearest neighbor correlation: 

The second is the correlation between the nodes con- 
jugate to a link (the nodes that the link would join if it 
were flipped) : 
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blocking Ieve! 
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Fig. I. The difference between expectation vulues of the maximum 
coordination number, 0,. computed on lattices of the sane size but 
for systems tba~ differ (by one) in the number of times they have 
been blocked. The blocking level listed is that of the system that has 
been blocked the most. The originul action is Izro. 

(where i’ and j’ represent the nodes where the ends of 
the flip@ link would go). The third is the product of 
the firs! two: 

The fourth, fifth, and sixth are the second, third, and 
fourth powers of the coordination number minus six: 

04 = C (qi-6)*, 0s~ C (qi-6)’ 9 
I 1 

Finally, the seventh operator is the maximum coordi- 
nation number of the lattice: 

07 =mMq,) . 
Lattices were used Nith 9,36,144,576, and 2304 nodes 
which allowed for up to four iterations of the blocking 
transformation. The results shown correspond to 
1 X 10’ bare lattice sweeps. Table 1 shows the expec- 
tation values at all blocking levels starting from the 
largest lattice. There is a great variation in the expec- 
tation values as a function of block level and it is not 
at a!1 obvious that they are approaching a fixed point. 
The matching can be seen in Table 2 whirh compares 
the seven expectation values after three and four itera- 
tions of the blocking transformation on lattices such 
that the final number of nodes is nine. They match fairly 
well, an indication that the effective theory is near its 
fixed point. Fig. 1 uses expectation value differences 
of 0, to give a graphical reprcsenrltion of the approach 
to the fixed point. It would be interesting to measure 
the string susceptibility exponent to confirm that indeed 
this fixed point corresponds to the usual two-dimen- 
sional gravity theory. 

Now consider a perturbation of this scenario using 
the action 

S= a C ln(qi) . 

Table 3 
Expectation v~lucs of Seven operators at all blocking levels beginning with B 2304 node lattice 

Operator n 

0 I 2 3 4 

01 2.29.5(2) X10(6) 4.43;6) 1.12(S) -0.367(E) 

4 4.1%(4) 7.16(B) B.4(2) 4.5(2) 0.34(2) 

01 -10.93(-F) ll.l(6) -W) WI) 0.31(B) 

04 <!.360<3) 5.16(3! 5.47(5) 4.WB) 0.694( 8) 

OS X68(7) WI) 71(2) 28(l) -0.56(2) 

a3 727(3; 2000(70) 1900( 100) 416(jO; 3.71(7) 

4 36.79(5) 37.5( 3) 29.1(2) 17.9(2) 7.89(l) 

TheactionisS= -X,ln(y;). 
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0 1 
block& level 

3 4 3 

Fig. 2. The difference between e;;pectation values of the maximum 

coordination number, O,, computed with two diffecznt actions as a 
function of the blocking level. The diamonds represent expectation 
values obtained withS=& ln(q,) minus thoseobtained with S-O 
when LI= + I while the squares represent the analogous resultr for 
a=-I. 

If this term is irrelevant, the sequence of expectation 
values gener;lted by iterating the blocking transforma- 
tion should anproach those generated with S = 0 at large 
blocking lev:Is, cvcn if the expectation values differ a 
great deal at the lower blocking levels. Table 3 shows 
the data in tile case of a = - I. Fig. 2. usinp 0, again, 
gives a graphical representation of this data Jong with 
data for a = + 1. The fact that the expectation value 
differences approach zero as the blocking le~cl 
increases confirms that In(q) is indeed an ‘rrelev:tnt 
operator. The results are similar for much larger (1. Fig. 
3 shows the analogous data for (Y = ?r IO. At a true fixed 
point, ail of the expectation values +uld match, not 
just one. Figs. 4 and 5 give the expectation value dif- 
ferences for 0, nt the same values of cy as in Figs. 2 
and 3 respectively. Matching is dcmonstralcd for this 
operator as well. Thus, our results provide an indc- 
pendcnt check oC the universality first reported in [ 61 
where x,, was computed numerically and found inde- 
pendent of (Y in the region am - 2 --) u w IO. It is also 

15 
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-1 0 1 
block& level 

3 4 5 

Fig. 3. This figure is like figure two except that the .quares represent 

a = + IO and the crosses represent Q= - IO. Crosses are missing for 
levels zero and one because the data is off scale by more than an 
order of magnitude. 

-1 0 1 2 ? 4 5 
blocking level 

Fig. 4. This is the same plot w Fig. 2 except that 0, is used insread 
ot 0,. 
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Fig. 5. This is the same plot as Fig. 3 except that 0, is used instead 
of 0,. Again, some of the a= - 10 da;a is off scale. 

consistent with the lack of any phase transition seen in 
the simulation study [ 71. 

In [ 1] there is however evidence that for negative 
enough a! there may be a phase transition to some crum- 
pled state. Such a transition is not visible in perturbation 
theory [ 81. If such a transition exists, one would expect 
the expectation values to flow to a set of values different 
from those obtained with S=O. We find that while at 
negative values of c~ the expectation values on the btie 
lattice start looking dramatically different from those 
at S = 0 (for instance the value of 0, increases by more 
than an order of magnitude) the renormalization group 
trajectories flow to the same point within statistics. 

Thus, the renormalization group scheme used here 
gives no evidence for a phase transition. Jt is possible 
that there is such a transition and that either the partic- 
ular renormalization group transformation used here is 
not “apt” for that transition or the expectation value 
differences of the blocked operators are smaller than 
our errors. The statistical uncertainty of the (Y = - 10 
data at the highest level of blocking is from three to 
five times larger (depending on the operator) than that 
of any of the other values of o considered in this paper. 
In this regard, it should be no!ed that the effects of Ising 

matter at the critical point on expectation values in the 
gravitational sector are too small to be detected with 
current statistics. However, the effects of matter on the 
gravitational sector are notoriously small for this for- 
mulation of quantum gravity whereas the higher deriv- 
ative term can clearly have a strong effect. It may be 
that there is a transition that is nearby in the space of 
theories possibly of a higher order of multicriticality. 
TO see such a fixed point would require tuning of addi- 
tional couplings. 

To summarize, we have presented resultsconcerning 
the fixed point structure of the dynamical triangulation 
model for two-dimensional quantum gravity. These 
have heen obtained using au adaptation of the Monte 
Carlo renormaliz.ttion g,‘oup tc, the situation where the 
lattice itself carries the dynamical degrees of freedom. 
Firstly, we have given evidence that our renormaliza- 
tion group procedure does indeed yield a fixed point 
with the usual (trivial) bare action. 

We have further studied a class of higher derivative 
operator and given evidence that such an operator is 
truly irrelevant outside of perturbation theory. We see 
no evidence for new fixed points or equivalently new 
phase transitions in the lattice model. It is possible 
however, that other choices of higher derivative oper- 
ator might indeed show new structure [9]. The tech- 
nique used in this paper can easily be applied to other 
actions as well. 
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