110 research outputs found

    Association of inpatient use of angiotensin converting enzyme inhibitors and angiotensin II receptor blockers with mortality among patients with hypertension hospitalized with COVID-19

    Get PDF
    Rationale: Use of angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin II receptor blockers (ARBs) is a major concern for clinicians treating coronavirus disease 2019 (COVID-19) in patients with hypertension. Objective: To determine the association between in-hospital use of ACEI/ARB and all-cause mortality in COVID-19 patients with hypertension. Methods and Results: This retrospective, multi-center study included 1128 adult patients with hypertension diagnosed with COVID-19, including 188 taking ACEI/ARB (ACEI/ARB group; median age 64 [IQR 55-68] years; 53.2% men) and 940 without using ACEI/ARB (non-ACEI/ARB group; median age 64 [IQR 57-69]; 53.5% men), who were admitted to nine hospitals in Hubei Province, China from December 31, 2019 to February 20, 2020. Unadjusted mortality rate was lower in the ACEI/ARB group versus the non-ACEI/ARB group (3.7% vs. 9.8%; P = 0.01). In mixed-effect Cox model treating site as a random effect, after adjusting for age, gender, comorbidities, and in-hospital medications, the detected risk for all-cause mortality was lower in the ACEI/ARB group versus the non-ACEI/ARB group (adjusted HR, 0.42; 95% CI, 0.19-0.92; P =0.03). In a propensity score-matched analysis followed by adjusting imbalanced variables in mixed-effect Cox model, the results consistently demonstrated lower risk of COVID-19 mortality in patients who received ACEI/ARB versus those who did not receive ACEI/ARB (adjusted HR, 0.37; 95% CI, 0.15-0.89; P = 0.03). Further subgroup propensity score-matched analysis indicated that, compared to use of other antihypertensive drugs, ACEI/ARB was also associated with decreased mortality (adjusted HR, 0.30; 95%CI, 0.12-0.70; P = 0.01) in COVID-19 patients with hypertension. Conclusions: Among hospitalized COVID-19 patients with hypertension, inpatient use of ACEI/ARB was associated with lower risk of all-cause mortality compared with ACEI/ARB non-users. While study interpretation needs to consider the potential for residual confounders, it is unlikely that in-hospital use of ACEI/ARB was associated with an increased mortality risk

    School Dropouts and Conditional Cash Transfers: Evidence from a Randomized Controlled Trial in Rural China's Junior High Schools

    Full text link
    Recent anecdotal reports suggest that dropout rates may be higher and actually increasing over time in poor rural areas. There are many reasons not to be surprised that there is a dropout problem, given the fact that China has a high level of poverty among the rural population, a highly competitive education system and rapidly increasing wages for unskilled workers. The overall goal of this study is to examine if there is a dropout problem in rural China and to explore the effectiveness that a Conditional Cash Transfer (CCT) program could have on dropouts (and mechanism by which the CCT might affect drop outs). To meet this objective, we conducted a randomized controlled trial (RCT) of a CCT using a sample of 300 junior high school students in a nationally-designated poor county in Northwest China. Using our data, we found that the annual dropout rate in the study county was high, about 7.0%. We find, however, that a CCT program reduces drop outs by 60%; the dropout rate is 13.3% in the control group and 5.3 % in the treatment group. The program is most effective in the case of girls, younger students and the poorest perfirming students

    The effect of a micronutrient powder home fortification program on anemia and cognitive outcomes among young children in rural China: a cluster randomized trial

    Get PDF
    Abstract Background Anemia early in life has been associated with delayed cognitive and motor development. The WHO recommends home fortification using multiple micronutrient powders (MNPs) containing iron as a strategy to address anemia in children under two. We evaluated the effects of a program freely distributing MNP sachets to caregivers of infants in rural China. Methods We conducted a cluster-randomized controlled trial in Shaanxi province, enrolling all children aged 6–11 months in target villages. Following a baseline survey, investigators randomly assigned each village/cluster to a control or treatment group. In the treatment group, caregivers were instructed to give MNPs daily. Follow-up was after 6, 12, and 18 months of intervention. Primary outcomes were hemoglobin concentrations and scores on the Bayley Scales of Infant Development. Results One thousand, eight hundred and-two eligible children and their caregivers were enrolled. At baseline 48% (870) of children were anemic and 29% (529) were developmentally delayed. Six hundred and-ten children (117 villages) were assigned to the control group and 1192 children (234 villages) were assigned to the treatment group. Assignment to the treatment group was associated with an improvement in hemoglobin levels (marginal effect 1.77 g/L, 95% CI 0.017–3.520, p-value = 0.048) and cognitive development (marginal effect 2.23 points, 95% CI 0.061–4.399, p-value = 0.044) after 6 months but not thereafter. There were no significant effects on motor development. Zero effects after the first 6 months were not due to low compliance, low statistical power, or changes in feeding behavior. Hemoglobin concentrations improved in both the treatment and control groups over the course of the study; however, 22% (325) of children remained anemic at endline, and 48% (721) were cognitively delayed. Conclusions Providing caregivers with MNP sachets modestly hastened improvement in hemoglobin levels that was occurring absent intervention; however, this improvement did not translate into improved developmental outcomes at endline. Trial registration ISRCTN44149146 ; prospectively registered on 15th April 2013

    Implications of ghrelin and hexarelin in diabetes and diabetes-associated heart diseases

    Get PDF
    Ghrelin and its synthetic analog hexarelin are specific ligands of growth hormone secretagogue (GHS) receptor. GHS have strong growth hormone-releasing effect and other neuroendocrine activities such as stimulatory effects on prolactin and adrenocorticotropic hormone secretion. Recently, several studies have reported other beneficial functions of GHS that are independent of GH. Ghrelin and hexarelin, for examples, have been shown to exert GH-independent cardiovascular activity. Hexarelin has been reported to regulate peroxisome proliferator-activated receptor gamma (PPAR-γ) in macrophages and adipocytes. PPAR-γ is an important regulator of adipogenesis, lipid metabolism, and insulin sensitization. Ghrelin also shows protective effects on beta cells against lipotoxicity through activation of phosphatidylinositol-3 kinase/protein kinase B, c-Jun N-terminal kinase (JNK) inhibition, and nuclear exclusion of forkhead box protein O1. Acylated ghrelin (AG) and unacylated ghrelin (UAG) administration reduces glucose levels and increases insulin-producing beta cell number, and insulin secretion in pancreatectomized rats and in newborn rats treated with streptozotocin, suggesting a possible role of GHS in pancreatic regeneration. Therefore, the discovery of GHS has opened many new perspectives in endocrine, metabolic, and cardiovascular research areas, suggesting the possible therapeutic application in diabetes and diabetic complications especially diabetic cardiomyopathy. Here, we review the physiological roles of ghrelin and hexarelin in the protection and regeneration of beta cells and their roles in the regulation of insulin release, glucose, and fat metabolism and present their potential therapeutic effects in the treatment of diabetes and diabetic-associated heart diseases

    Effective inhibition of colon cancer cell growth with MgAl-layered double hydroxide (LDH) loaded 5-FU and PI3K/mTOR dual inhibitor BEZ-235 through apoptotic pathways

    Get PDF
    Colon cancer is the third most common cancer and the third largest cause of cancer-related death. Fluorouracil (5-FU) is the front-line chemotherapeutic agent for colon cancer. However, its response rate is less than 60%, even in combination with other chemotherapeutic agents. The side effects of 5-FU also limit its application. Nanoparticles have been used to deliver 5-FU, to increase its effectiveness and reduce side effects. Another common approach for colon cancer treatment is targeted therapy against the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway. A recently-invented inhibitor of this pathway, BEZ-235, has been tested in several clinical trials and has shown effectiveness and low side effects. Thus, it is a very promising drug for colon cancer treatment. The combination of these two drugs, especially nanoparticle-packed 5-FU and BEZ-235, has not been studied. In the present study, we demonstrated that nanoparticles of layered double hydroxide (LDH) loaded with 5-FU were more effective than a free drug at inhibiting colon cancer cell growth, and that a combination treatment with BEZ-235 further increased the sensitivity of colon cancer cells to the treatment of LDH-packed 5-FU (LDH-5-FU). BEZ-235 alone can decrease colon cancer HCT-116 cell viability to 46% of the control, and the addition of LDH-5-FU produced a greater effect, reducing cell survival to 8% of the control. Our data indicate that the combination therapy of nanodelivered 5-FU with a PI3K/Akt inhibitor, BEZ-235, may promise a more effective approach for colon cancer treatment

    Applications of nanotechnology for melanoma treatment, diagnosis, and theranostics

    Get PDF
    Melanoma is the most aggressive type of skin cancer and has very high rates of mortality. An early stage melanoma can be surgically removed, with a survival rate of 99%. However, metastasized melanoma is difficult to cure. The 5-year survival rates for patients with metastasized melanoma are still below 20%. Metastasized melanoma is currently treated by chemotherapy, targeted therapy, immunotherapy and radiotherapy. The outcome of most of the current therapies is far from optimistic. Although melanoma patients with a mutation in the oncogene v-Raf murine sarcoma viral oncogene homolog B1 (BRAF) have an initially higher positive response rate to targeted therapy, the majority develop acquired drug resistance after 6 months of the therapy. To increase treatment efficacy, early diagnosis, more potent pharmacological agents, and more effective delivery systems are urgently needed. Nanotechnology has been extensively studied for melanoma treatment and diagnosis, to decrease drug resistance, increase therapeutic efficacy, and reduce side effects. In this review, we summarize the recent progress on the development of various nanoparticles for melanoma treatment and diagnosis. Several common nanoparticles, including liposome, polymersomes, dendrimers, carbon-based nanoparticles, and human albumin, have been used to deliver chemotherapeutic agents, and small interfering ribonucleic acids (siRNAs) against signaling molecules have also been tested for the treatment of melanoma. Indeed, several nanoparticle-delivered drugs have been approved by the US Food and Drug Administration and are currently in clinical trials. The application of nanoparticles could produce side effects, which will need to be reduced so that nanoparticle-delivered drugs can be safely applied in the clinical setting

    Molecular Mechanisms of Antipsychotic Drug-Induced Diabetes

    Get PDF
    Antipsychotic drugs (APDs) are widely prescribed to control various mental disorders. As mental disorders are chronic diseases, these drugs are often used over a life-time. However, APDs can cause serious glucometabolic side-effects including type 2 diabetes and hyperglycaemic emergency, leading to medication non-compliance. At present, there is no effective approach to overcome these side-effects. Understanding the mechanisms for APD-induced diabetes should be helpful in prevention and treatment of these side-effects of APDs and thus improve the clinical outcomes of APDs. In this review, the potential mechanisms for APD-induced diabetes are summarized so that novel approaches can be considered to relieve APD-induced diabetes. APD-induced diabetes could be mediated by multiple mechanisms: (1) APDs can inhibit the insulin signaling pathway in the target cells such as muscle cells, hepatocytes and adipocytes to cause insulin resistance; (2) APD-induced obesity can result in high levels of free fatty acids (FFA) and inflammation, which can also cause insulin resistance. (3) APDs can cause direct damage to beta-cells, leading to dysfunction and apoptosis of beta-cells. A recent theory considers that both beta-cell damage and insulin resistance are necessary factors for the development of diabetes. In high-fat diet-induced diabetes, the compensatory ability of beta-cells is gradually damaged, while APDs cause direct beta-cell damage, accounting for the severe form of APD-induced diabetes. Based on these mechanisms, effective prevention of APD-induced diabetes may need an integrated approach to combat various effects of APDs on multiple pathways

    Host-Sensitized Luminescence of Nd 3+

    No full text
    • …
    corecore