371 research outputs found

    Osmotic and ionic regulation in the Red River pupfish, Cyprinodon rubrofluviatilis /

    Get PDF

    Spatio-Temporal Linear Stability Analysis of Stratified Planar Wakes: Velocity and Density Asymmetry Effects

    Get PDF
    This paper explores the hydrodynamic stability of bluff body wakes with non-uniform mean density, asymmetric mean density, and velocity profiles. This work is motivated by experiments [S. Tuttle et al., “Lean blow off behavior of asymmetrically-fueled bluff body-stabilized flames,” Combust. Flame 160, 1677 (2013)], which investigated reacting wakes with equivalence ratio stratification and, hence, asymmetry in the base flow density profiles. They showed that highly stratified cases exhibited strong, narrowband oscillations, suggestive of global hydrodynamic instability. In this paper, we present a local hydrodynamic stability analysis for non-uniform density wakes that includes base flow asymmetry. The results show that increasing the degree of base density asymmetry generally has a destabilizing effect and that increasing base velocity asymmetry tends to be stabilizing. Furthermore, we show that increasing base density asymmetry slightly decreases the absolute frequency and that increasing the base velocity asymmetry slightly increases the absolute frequency. In addition, we show that increasing the degree of base density asymmetry distorts the most absolutely unstable hydrodynamic mode from its nominally sinuous structure. This distorted mode exhibits higher amplitude pressure and velocity oscillations near the interface with the smaller density jump than near the one with the bigger density jump. This would then be anticipated to lead to strongly non-symmetric amplitudes of flame flapping, with much stronger flame flapping on the side with lower density ratio. These predictions are shown to be consistent with experimental data. These comparisons support the analytical predictions that increased base density asymmetry are destabilizing and that hydrodynamic velocity fluctuation amplitudes should be greatest at the flame with the lowest density jump

    Active removal of inorganic phosphate from cerebrospinal fluid by the choroid plexus

    Get PDF
    The P-i concentration of mammalian cerebrospinal fluid (CSF) is about one-half that of plasma, a phenomenon also shown here in the spiny dogfish, Squalus acanthias. The objective of the present study was to characterize the possible role of the choroid plexus (CP) in determining CSF P-i concentration. The large sheet-like fourth CP of the shark was mounted in Ussing chambers where unidirectional P-33(i) fluxes revealed potent active transport from CSF to the blood side under short-circuited conditions. The flux ratio was 8: 1 with an average transepithelial resistance of 87 +/- 17.9 Omega . cm(2) and electrical potential difference of + 0.9 +/- 0.17 mV (CSF side positive). Active P-i absorption from CSF was inhibited by 10 mM arsenate, 0.2 mM ouabain, Na+ -free medium, and increasing the K+ concentration from 5 to 100 mM. Li+ stimulated transport twofold compared with Na+-free medium. Phosphonoformic acid (1 mM) had no effect on active Pi transport. RT-PCR revealed both P-i transporter (PiT) 1 and PiT2 (SLC20 family) gene expression, but no Na+ -P-i cotransporter II (SLC34 family) expression, in the shark CP. PiT2 immunoreactivity was shown by immunoblot analysis and localized by immunohistochemistry in (or near) the CP apical microvillar membranes of both the shark and rat. PiT1 appeared to be localized primarily to vascular endothelial cells. Taken together, these data indicate that the CP actively removes P-i from CSF. This process has transport properties consistent with a PiT2, Na+-dependent transporter that is located in the apical region of the CP epithelium.National Science Foundation [0843253]; Fundacao para a Ciencia e a Tecnologia, Portuga

    Comparison of line-peak and line-scanning excitation in two-color laser-induced-fluorescence thermometry of OH

    Get PDF
    Two-line laser-induced-fluorescence (LIF) thermometry is commonly employed to generate instantaneous planar maps of temperature in unsteady flames. The use of line scanning to extract the ratio of integrated intensities is less common because it precludes instantaneous measurements. Recent advances in the energy output of high-speed, ultraviolet, optical parameter oscillators have made possible the rapid scanning of molecular rovibrational transitions and, hence, the potential to extract information on gas-phase temperatures. In the current study, two-line OH LIF thermometry is performed in a wellcalibrated reacting flow for the purpose of comparing the relative accuracy of various line-pair selections from the literature and quantifying the differences between peak-intensity and spectrally integrated line ratios. Investigated are the effects of collisional quenching, laser absorption, and the integration width for partial scanning of closely spaced lines on the measured temperatures. Data from excitation scans are compared with theoretical line shapes, and experimentally derived temperatures are compared with numerical predictions that were previously validated using coherent anti-Stokes–Raman scattering. Ratios of four pairs of transitions in the A2Σ+←X2Π (1,0) band of OH are collected in an atmospheric-pressure, near-adiabatic hydrogen-air flame over a wide range of equivalence ratios—from 0.4 to 1.4. It is observed that measured temperatures based on the ratio of Q1(14)/Q1(5) transition lines result in the best accuracy and that line scanning improves the measurement accuracy by as much as threefold at lowequivalence- ratio, low-temperature conditions. These results provide a comprehensive analysis of the procedures required to ensure accurate two-line LIF measurements in reacting flows over a wide range of conditions

    2-Cyano-1-methyl­pyridinium nitrate

    Get PDF
    In the title compound, C7H7N2 +·NO3 −, all atoms except the methyl H atoms lie on a crystallographic mirror plane. The inter­layer distance, including that between aligned N atoms from alternating cations and anions in adjacent layers, is exceptionally short at 3.055 (1) Å. Two-dimensional C—H⋯O hydrogen-bonded networks link cations to anions, while C—H⋯N inter­actions link cations within each layer. Anion–π inter­actions with the cations assist in binding the layers together

    Duration of adjuvant chemotherapy for stage III colon cancer

    Get PDF
    BACKGROUND Since 2004, a regimen of 6 months of treatment with oxaliplatin plus a fluoropyrimidine has been standard adjuvant therapy in patients with stage III colon cancer. However, since oxaliplatin is associated with cumulative neurotoxicity, a shorter duration of therapy could spare toxic effects and health expenditures. METHODS We performed a prospective, preplanned, pooled analysis of six randomized, phase 3 trials that were conducted concurrently to evaluate the noninferiority of adjuvant therapy with either FOLFOX (fluorouracil, leucovorin, and oxaliplatin) or CAPOX (capecitabine and oxaliplatin) administered for 3 months, as compared with 6 months. The primary end point was the rate of disease-free survival at 3 years. Noninferiority of 3 months versus 6 months of therapy could be claimed if the upper limit of the two-sided 95% confidence interval of the hazard ratio did not exceed 1.12. RESULTS After 3263 events of disease recurrence or death had been reported in 12,834 patients, the noninferiority of 3 months of treatment versus 6 months was not confirmed in the overall study population (hazard ratio, 1.07; 95% confidence interval [CI], 1.00 to 1.15). Noninferiority of the shorter regimen was seen for CAPOX (hazard ratio, 0.95; 95% CI, 0.85 to 1.06) but not for FOLFOX (hazard ratio, 1.16; 95% CI, 1.06 to 1.26). In an exploratory analysis of the combined regimens, among the patients with T1, T2, or T3 and N1 cancers, 3 months of therapy was noninferior to 6 months, with a 3-year rate of disease-free survival of 83.1% and 83.3%, respectively (hazard ratio, 1.01; 95% CI, 0.90 to 1.12). Among patients with cancers that were classified as T4, N2, or both, the disease-free survival rate for a 6-month duration of therapy was superior to that for a 3-month duration (64.4% vs. 62.7%) for the combined treatments (hazard ratio, 1.12; 95% CI, 1.03 to 1.23; P=0.01 for superiority). CONCLUSIONS Among patients with stage III colon cancer receiving adjuvant therapy with FOLFOX or CAPOX, noninferiority of 3 months of therapy, as compared with 6 months, was not confirmed in the overall population. However, in patients treated with CAPOX, 3 months of therapy was as effective as 6 months, particularly in the lower-risk subgroup. (Funded by the National Cancer Institute and others.

    Mechanism of active K + secretion by flounder urinary bladder

    Full text link
    We investigated the mechanism of active K + transport by the urinary bladder of the winter flounder by measuring transepithelial properties in Ussing Chambers and by determining the cellular electrical potential profile using conventional microelectrodes. In the absence of transmural electrochemical potential gradients isolated bladders can exhibit a serosa-to-mucosa short circuit which is due entirely to net K + secretion. The properties of transcellular K + movement can be adequately described by a model which provides for active K + uptake across the basolateral membrane via an electrogenic Na/K ATPase and K + exit from the cell across the apical membrane down an electrochemical potential gradient via K + channels which are blocked by mucosal barium. The conductance of the apical membranes of the transporting cells appears to be due almost solely to K + while that of the basolateral membrane may be due largely to Cl − .Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47455/1/424_2004_Article_BF00585048.pd

    Germline Variation in Colorectal Risk Loci Does Not Influence Treatment Effect or Survival in Metastatic Colorectal Cancer

    Get PDF
    BackgroundColorectal cancer (CRC) risk is partly conferred by common, low-penetrance single nucleotide polymorphisms (SNPs). We hypothesized that these SNPs are associated with outcomes in metastatic CRC.MethodsSix candidate SNPs from 8q24, 10p14, 15q13, 18q21 were investigated for their association with response rate (RR), time to progression (TTP) and overall survival (OS) among 524 patients treated on a phase III clinical trial of first-line chemotherapy for metastatic CRC.Resultsrs10795668 was weakly associated with TTP (p = 0.02), but not RR or OS. No other SNPs carried statistically significant HRs for any of the primary outcomes (RR, TTP or OS).ConclusionCommon low-penetrance CRC risk SNPs were not associated with outcomes among patients with metastatic CRC

    Survival following early-stage colon cancer: An ACCENT-based comparison of patients versus a matched international general population

    Get PDF
    Background: Post-treatment survival experience of early colon cancer (CC) patients is well described in the literature, which states that cure is probable for some patients. However, comparisons of treated patients' survival versus that expected from a matched general population (MGP) are limited. Patients and methods: A total of 32 745 patients from 25 randomized adjuvant trials conducted from 1977 to 2012 in 41 countries were pooled. Observed long-term survival of these patients was compared with expected survival matched on sex, age, country, and year, both overall and by stage (II and III), sex, treatment [surgery, 5-fluorouracil (5-FU), 5-FU + oxaliplatin], age (<70 and 70+), enrollment year (pre/post 2000), and recurrence (yes/no). Comparisons were made at randomization and repeated conditional on survival to 1, 2, 3, and 5 years. CC and MGP equivalence was tested, and observed Kaplan-Meier survival rates compared with expected MGP rates 3 years out from each landmark. Analyses were also repeated in patients without recurrence. Results: Within most cohorts, long-term survival of CC patients remained statistically worse than the MGP, though conditional survival generally improved over time. Among those surviving 5 years, stage II, oxaliplatin-treated, elderly, and recurrence-free patients achieved subsequent 3-year survival rates within 5% of the MGP, with recurrence-free patients achieving equivalence. Conclusions: Conditional on survival to 5 years, long-term survival of most CC patients on clinical trials remains modestly poorer than an MGP, but achieves MGP levels in some subgroups. These findings emphasize the need for access to quality care and improved treatment and follow-up strategies

    Examining the effects of anthropogenic emissions on isoprene-derived secondary organic aerosol formation during the 2013 Southern Oxidant and Aerosol Study (SOAS) at the Look Rock, Tennessee ground site

    Get PDF
    A suite of offline and real-time gas-and particlephase measurements was deployed at Look Rock, Tennessee (TN),during the 2013 Southern Oxidant and Aerosol Study (SOAS) to examine the effects of anthropogenic emissions on isoprene-derived secondary organic aerosol (SOA) formation. High-and low-time-resolution PM2.5 samples were collected for analysis of known tracer compounds in isoprene-derived SOA by gas chromatography/electron ionizationmass spectrometry (GC/EI-MS) and ultra performance liquid chromatography/diode array detection-electrospray ionization-high-resolution quadrupole time-of-flight mass spectrometry (UPLC/DAD-ESI-HR-QTOFMS). Source apportionment of the organic aerosol (OA) was determined by positive matrix factorization (PMF) analysis of mass spectro-metric data acquired on an Aerodyne Aerosol Chemical Speciation Monitor (ACSM). Campaign average mass concentrations of the sum of quantified isoprene-derived SOA tracers contributed to similar to 9% (up to 28 %) of the total OA mass, with isoprene-epoxydiol (IEPOX) chemistry accounting for similar to 97% of the quantified tracers. PMF analysis resolved a factor with a profile similar to the IEPOX-OA factor resolved in an Atlanta study and was therefore designated IEPOX-OA. This factor was strongly correlated (r(2) > 0.7) with 2-methyltetrols, C5-alkene triols, IEPOX-derived organosulfates, and dimers of organosulfates, confirming the role of IEPOX chemistry as the source. On average, IEPOX-derived SOA tracer mass was similar to 26% (up to 49 %) of the IEPOX-OA factor mass, which accounted for 32% of the total OA. A low-volatility oxygenated organic aerosol (LV-OOA) and an oxidized factor with a profile similar to 91Fac observed in areas where emissions are biogenic-dominated were also resolved by PMF analysis, whereas no primary organic aerosol (POA) sources could be resolved. These findings were consistent with low levels of primary pollutants, such as nitric oxide (NO similar to 0.03 ppb),carbon monoxide (CO similar to 116 ppb),and black carbon (BC similar to 0.2 mu g m(-3)). Particle-phase sulfate is fairly correlated (r(2) similar to 0.3) with both methacrylic acid epoxide (MAE)/hydroxymethyl-methyl-ff lactone (HMML)-(henceforth called methacrolein (MACR)derived SOA tracers) and IEPOX-derived SOA tracers, and more strongly correlated (r(2) similar to 0.6) with the IEPOX-OA factor, in sum suggesting an important role of sulfate in isoprene SOA formation. Moderate correlation between the MACR-derived SOA tracer 2-methylglyceric acid with sum of reactive and reservoir nitrogen oxides (NOy;r(2) = 0.38) and nitrate (r(2) = 0.45) indicates the potential influence of anthropogenic emissions through long-range transport. Despite the lack of a clear association of IEPOX-OA with locally estimated aerosol acidity and liquid water content (LWC),box model calculations of IEPOX uptake using the simpleGAMMA model, accounting for the role of acidity and aerosol water, predicted the abundance of the IEPOX-derived SOA tracers 2-methyltetrols and the corresponding sulfates with good accuracy (r(2) similar to 0.5 and similar to 0.7, respectively). The modeling and data combined suggest an anthropogenic influence on isoprene-derived SOA formation through acid-catalyzed heterogeneous chemistry of IEPOX in the southeastern US. However, it appears that this process was not limited by aerosol acidity or LWC at Look Rock during SOAS. Future studies should further explore the extent to which acidity and LWC as well as aerosol viscosity and morphology becomes a limiting factor of IEPOX-derived SOA, and their modulation by anthropogenic emissions
    corecore