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Spatio-temporal linear stability analysis of stratified planar
wakes: Velocity and density asymmetry effects
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Michael W. Renfro,2,c) Baki M. Cetegen,3 and Tim Lieuwen1
1Department of Aerospace Engineering, Georgia Institute of Technology, Atlanta,
Georgia 30332, USA
2Department of Mechanical Engineering, University of Kentucky, Lexington,
Kentucky 40506, USA
3Department of Mechanical Engineering, University of Connecticut, Storrs,
Connecticut 06269, USA

(Received 21 August 2015; accepted 19 February 2016; published online 1 April 2016)

This paper explores the hydrodynamic stability of bluff body wakes with non-uniform
mean density, asymmetric mean density, and velocity profiles. This work is motivated
by experiments [S. Tuttle et al., “Lean blow off behavior of asymmetrically-fueled
bluff body-stabilized flames,” Combust. Flame 160, 1677 (2013)], which investigated
reacting wakes with equivalence ratio stratification and, hence, asymmetry in the
base flow density profiles. They showed that highly stratified cases exhibited strong,
narrowband oscillations, suggestive of global hydrodynamic instability. In this paper,
we present a local hydrodynamic stability analysis for non-uniform density wakes
that includes base flow asymmetry. The results show that increasing the degree of
base density asymmetry generally has a destabilizing effect and that increasing base
velocity asymmetry tends to be stabilizing. Furthermore, we show that increasing
base density asymmetry slightly decreases the absolute frequency and that increasing
the base velocity asymmetry slightly increases the absolute frequency. In addition,
we show that increasing the degree of base density asymmetry distorts the most
absolutely unstable hydrodynamic mode from its nominally sinuous structure. This
distorted mode exhibits higher amplitude pressure and velocity oscillations near the
interface with the smaller density jump than near the one with the bigger density
jump. This would then be anticipated to lead to strongly non-symmetric amplitudes
of flame flapping, with much stronger flame flapping on the side with lower density
ratio. These predictions are shown to be consistent with experimental data. These
comparisons support the analytical predictions that increased base density asymmetry
are destabilizing and that hydrodynamic velocity fluctuation amplitudes should be
greatest at the flame with the lowest density jump. C 2016 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4943238]

I. BACKGROUND

This paper describes an analysis of the hydrodynamic stability of reacting bluff body wakes. The
bluff body wake is a common mode of flame stabilization in a variety of practical combustion devices.1

The unsteady flow fields of reacting bluff body wakes are often dominated by large scale coherent
structures, embedded upon a background of acoustic waves and broadband fine scale turbulence.
These large scale structures play important roles in such processes as combustion instabilities,2–6
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mixing and entrainment, flashback, and blow off,1 and they arise because of underlying hydrodynamic
instabilities of the flow field.7

We quickly review key dynamical features of non-reacting wake flows. A pair of separating shear
layers appears immediately downstream of the bluff body in high Reynolds number, planar bluff body
flows.8 These shear layers are unstable due to the Kelvin-Helmholtz mechanism,9 and they roll up
into spatially concentrated locations of high vorticity and grow in thickness.10,11 In uniform density
flows, the growing shear layers interact strongly, resulting in an unstable, sinuous roll up of the bluff
body wake into large-scale vortical structures.12 This instability manifests itself as the Von Karman
vortex street and has a characteristic frequency9 of

fbvk = St
Uu

D
, (1)

where Uu is the lip velocity at the bluff body, D is the cross-stream diameter of the bluff body, and
St is the Strouhal number. For circular cylinders, St is independent of Reynolds number (St = 0.21)
in the turbulent shear layer, laminar boundary layer regime, i.e., at Reynolds numbers in the range of
∼1000 < Re < ∼200 000.13 Bluff body shape also influences the Strouhal number for the Von Karman
vortex street.14 In particular, St is lower for “bluffer” bodies, i.e., those with higher drag and wider
wakes.15,16

Experimental studies of reacting bluff body wakes have demonstrated that combustion often tends
to suppress the sinuous wake instability.17–19 For example, Erickson et al.19 performed a systematic
study that illustrated the influence of the flame density ratio upon the large scale flow dynamics.
Their results, reproduced in Figure 1, show that a large sinuous flow feature becomes prominent as
the density ratio across the flame is reduced below a value of approximately 2. Similarly, Emerson
et al.20 experimentally explored the role of the flame density ratio, ρu/ρb, where ρu is the reactant
(un-burned) density and ρb is the product (burned) density. They observed a gradual wake structure
transition in a density ratio range of roughly 2–3. This observation is quite significant as it demon-
strates that the dominant fluid mechanics in a burner with non-preheated reactants, which has a “high”
density ratio, can be very different from those of a facility with highly preheated reactants, such
as many industrial combustion applications. For example, stoichiometric methane air flames with
reactant temperatures of 300 K and 1000 K have density ratios of 7.5 and 2.6, respectively.

These fundamentally different wake dynamics observed at high and low flame density ratios
are the manifestations of different instabilities. The low density ratio scenario (see Figure 1(a)) is a
globally unstable flow, while the high density ratio scenario (see Figure 1(b)) is a convectively unsta-
ble flow. Convectively unstable flows have positive spatial growth rates for one or more disturbance
wavelengths with nonzero group velocity, but all disturbances of zero group velocity are damped.
Thus, the amplified wave packets grow as they are convected out of the domain. These flows tend to

FIG. 1. Left column: computationally predicted vorticity field and instantaneous flame edge for two flame density ratios, (a)
ρu/ρb = 1.25 and (b) ρu/ρb = 2.0, reproduced with permission from R. R. Erickson and M. C. Soteriou, “The influence of
reactant temperature on the dynamics of bluff body stabilized premixed flames,” Combust. Flame 158, 2441 (2011). Copyright
2011 Elsevier. Right column: chemiluminescence flame images at two density ratios, (c) ρu/ρb = 1.7 and (d) ρu/ρb = 3.2,
from the authors’ experimental work.20
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be highly receptive to excitation and behave as disturbance amplifiers.22–24 Globally unstable flows
and absolutely unstable flow profiles are self-excited, meaning that they continue to oscillate in the
lab-fixed reference frame once they are perturbed. Unlike a convectively unstable flow, oscillations
persist without continuous excitation. Absolute instability is a local concept, meaning that it describes
the stability of local flow profiles, typically at a fixed axial position. In real flows where the mean
flow profile develops axially, a sufficiently large “pocket” of absolute instability can serve as the
wave-maker which is the source of global instability, whose spatial pattern is known as the global
mode.22–24 Thus, flows containing regions with large, positive absolute growth rates tend to be glob-
ally unstable. In the case of the bluff body wake, the global instability manifests itself as the sinuous
vortical structures discussed previously.12

Yu and Monkewitz25 performed a local stability analysis of a model wake flow with non-uniform
density. They parameterized the flow with two stability parameters: the density ratio, S = ρb/ρu, and
a shear ratio, λ = (Ub −Uu) / (Ub +Uu), where the base density, ρ, and base velocity, U, are marked
with a subscript b in the wake region and are marked with a subscript u in the free-stream region. For
the reacting wake problem, λ < 0 and S < 1. They showed that flows with a high level of reverse flow,
which corresponds to a high |λ |, are absolutely unstable. Additionally, they showed that flows with
S close to 1 (small density jumps) are absolutely unstable. In addition, Emerson et al.20,26 showed
that the spatial offset between the time averaged density and velocity points of inflection also had
strong influences on the global stability of the reacting wake. As such, the spreading of the flame
(controlled by the turbulent flame speed) relative to the shear layer has significant influences on the
flame density ratio values at which self-sustained oscillations occur. These model stability analyses
predict two important qualitative trends— absolute instability growth rates of a wake flow increase
as density ratio decreases, and as backflow ratio increases.

The majority of existing analyses and experiments have focused on symmetric configurations
(symmetric geometry and time-averaged flow).20,21,27,28 A notable exception is the recent experiments
by Tuttle et al.,29 who analyzed the dynamics of combusting wakes which were fueled with varying
degrees of transverse stratification with respect to the bluff body centerline. Figure 2(a) shows their
stratified equivalence ratio profile, where the nominal equivalence ratio, φ, varies between φ − φε and
φ + φε at y = H and y = −H , respectively. Figure 2(b) shows a typical chemiluminescence image
of a flame with stratified equivalence ratio, obtained from this facility. Their data show that a narrow-
band feature in the chemiluminescence spectrum appears and increases in amplitude with increases
in level of equivalence ratio stratification.29 Interpreted in the light of the above hydrodynamic sta-
bility discussion, this result suggests that wake density asymmetry promotes global instability. The
objective of this study is to parameterize base flow asymmetry parameters upon the hydrodynamic
stability trends of the flow. The model is also compared to experimental data of Tuttle et al.29 to assess
its ability to capture the key qualitative effects of these base flow asymmetry parameters.

II. STABILITY ANALYSIS FORMULATION

This section describes the stability analysis formulation, with greater details shown in the Ap-
pendix. The base flow whose stability is analyzed here consists of a recirculating wake with density

FIG. 2. (a) Equivalence ratio profile and (b) chemiluminescence image of a flame with stratified equivalence ratio. Repro-
duced with permission from Tuttle et al., “Lean blowoff behavior of asymmetrically-fueled bluff body-stabilized flames,”
Combust. Flame 160, 1677 (2013). Copyright 2013 Elsevier.



045101-4 Emerson et al. Phys. Fluids 28, 045101 (2016)

FIG. 3. Model wake base flow with density stratification and asymmetry in the base velocity and density.

stratification and confinement. The base flow, shown in Figure 3, is modeled as three regions, which
contain smooth, continuous velocity and density profiles, separated by discontinuous jumps. These
three regions represent different physical parts of the flow. The outer regions, denoted (a) and (c),
represent the outer reactant flow. The inner region, denoted (b), represents the recirculating wake of
combustion products. The interfaces between these regions consist of jump discontinuities, located
at y = δ1 and y = δ2, which represent the flames and shear layers. The base velocity profile is formu-
lated to allow asymmetry, by permitting different outer velocities on either sides of the bluff body.
The base density profile also includes asymmetry, by modeling a constant outer (reactant) density and
by allowing density jumps of differing magnitudes on either sides of the bluff body. These density
jumps physically represent the density drops across flames of different exothermicities, for example,
due to a stratified equivalence ratio.

The velocity jump discontinuities physically represent vorticity sheets and serve as unsteady
vorticity sources.26 These unsteady vorticity sources play a key role in the hydrodynamic stability of
this base profile. We define inner, outer, and average velocities as

Uinner = Ub,

Uouter =
1
2
(Ua +Uc) = Ulip,

Uav =
1
2
(Uouter +Uinner) .

(2)

Thus, Uouter denotes the average velocity of the reactant streams (the bluff body lip velocity) and
Uav denotes the overall average velocity at a given axial station. We define a bulk shear parameter,
λ, and a velocity asymmetry parameter χu as

λ =
Uinner −Uouter

Uav
,

χu =
Uc −Ua

Uav
.

(3)

Similarly, we define an outer (un-burned) density, a linearly varying inner (burned) density with den-
sity extremes of ρb1 and ρb2, and an average density

ρouter = ρa = ρc,

ρinner =
1
2
(ρb1 + ρb2) ,

ρav =
1
2
(ρouter + ρinner) .

(4)

From these densities, we form a bulk density ratio, S, and a density asymmetry parameter, χρ,

S =
ρinner

ρouter
,

χρ =
ρb2 − ρb1

ρav
.

(5)
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III. STABILITY ANALYSIS RESULT

Section II above details a stability analysis with five parameters: density ratio, S, shear ratio, λ,
density asymmetry, χρ, velocity asymmetry, χu, and a confinement ratio, β = H/D. For the results
shown in this section, the confinement ratio was held constant at β = 4, the value corresponding to
that used in the experiments considered later. Previous stability analyses have elucidated the influence
that S and λ have on the flow stability.25,30 As such, this section focuses on the influence of the asym-
metry parameters on the flow stability, which may be compared to the experimental results of Tuttle
et al.29 It is important to note that this section presents quantitative stability predictions (frequencies,
growth rates, critical parameters for absolute/convective transition, etc.) in the context of the base
flow model, which describes a reduced set of stability parameters. When these stability predictions
are later compared to the experiment, they are not meant as quantitative predictions of the experiment
but instead are meant to indicate the sensitivities and directional trends that the modeled parameters
have in the experiment.

The traditional bluff body wake problem has multiple absolute instability modes: some which
are sinuous and some which are varicose. As the degree of base flow asymmetry is increased, these
modes distort from the canonical sinuous and varicose structures. In this section, we focus on the
most absolutely unstable mode, which is a distortion of the sinuous mode over the studied parameter
space. In other words, this mode always belongs to a solution branch which reverts to the classical
sinuous mode when base flow symmetry is restored, i.e., when χu = χρ = 0. Figure 4 shows the
influence of χρ on the most absolutely unstable hydrodynamic pressure mode shape for a density ratio
of S = 0.7, a fixed shear ratio of λ = −2, and no velocity asymmetry (χu = 0). The figure shows the
distortion of the nominally sinuous mode, induced by density assymetry—in particular, it shows that
relatively larger pressure fluctuations occur on the side with the smaller density jump. Although the
mode shapes of the hydrodynamic velocity are not shown, the axial and transverse velocity compo-
nents also have greatest magnitude on the side with the smaller density jump, as quantified next for
the transverse velocity. Note that this is a linear analysis; thus, the transverse dependence of a given
mode’s magnitudes is meaningful, but the relative scaling of two different modes is arbitrary. There-
fore, these mode shapes are normalized to facilitate comparison, and the relative magnitudes of the
χρ = 0 and χρ = 1.1 modes should not be compared.

The magnitude and phase of the unsteady velocity component normal to the flame have a ma-
jor influence on the magnitude of flapping of bluff body flames.28 For nearly flat flames, like those
encountered in most high speed flows, the transverse velocity component is roughly equal to the
flame-normal velocity. Therefore, Figure 5(a) plots the ratio of the transverse velocity magnitude at
the smaller density jump (denoted |v̂L | = |v̂(y = δ2)|), relative to the transverse velocity magnitude

FIG. 4. Influence of density asymmetry on the most absolutely unstable mode shape. Results are shown for the hydrodynamic
pressure, for two different levels of base flow density asymmetry and S = 0.7. Part (a) shows a snapshot of the mode shape
(the real part), and part (b) shows the magnitude of the pressure mode. In (a), the two modes are displayed so that their phases
at y/H = 1 are the same. Part (c) shows stratified density profile.
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FIG. 5. Comparison of transverse velocity fluctuations at the two density jumps, showing (a) ratio of unsteady transverse
velocity magnitude and (b) phase difference between unsteady transverse velocities at the smaller density jump (at y = δ2)
and the bigger density jump (at y = δ1), for χρ = 1 and χu = 0.

at the bigger density jump (denoted |v̂R| = |v̂(y = δ1)|). The figure demonstrates that χρ has a strong
influence on this measure of transverse unsteady velocity asymmetry. For example, at χρ = 1 and
S = 0.5, the magnitude of transverse velocity fluctuation at the smaller density jump is 3.5 times
greater than that at the bigger density jump, such that we expect much stronger flapping of the leaner
flame branch relative to its neighboring richer flame branch. Figure 5(b) shows the phase difference
between the transverse velocity fluctuations at each of the two density jumps. This plot demonstrates
that the phase difference between the oscillatory velocities at the two flame branches is relatively
insensitive to base density asymmetry. For example, at S = 0.5, the phase difference approaches 30◦ at
high values of χρ, compared to a phase difference of 0◦ for a symmetric base flow. This has impli-
cations on the combusting wake application, as it suggests that base density stratification would not
strongly influence the relative phasing of the two flame branches.

Figure 6 shows the influence of base flow density asymmetry, χρ, on the absolute growth rate and
frequency. Results are shown for two fixed density ratios, S, and no base flow velocity asymmetry,
χu = 0. Figure 6(a) shows that increasing χρ is destabilizing. For example, a symmetrically stratified
wake with a density ratio of S = 0.5 is absolutely stable (and convectively unstable), but increasing
χρ to a value of roughly 0.6 causes a transition from convective instability to absolute instability.
This critical value of χρ is a function of S and λ and is denoted as χρ

∗ (S, λ). Figure 6(b) shows the

FIG. 6. Influence of base flow density asymmetry on the absolute (a) growth rate and (b) frequency, for two different density
ratios and λ =−2. Part (a) graphically defines the critical level of density stratification, χρ

∗(S). Two ordinate axes are shown
on each plot: the left axis shows the natural hydrodynamic scaling, and the right axis shows the classical empirical Strouhal
scaling.
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FIG. 7. Contours of absolute growth rate, ω0, iD/uav, as a function of the base flow density asymmetry and (a) the density
ratio with λ =−2, (c) the shear ratio with S = 0.5. Absolute frequency contours, f0,rD/uouter, are plotted in (b) and (d) for
same conditions as parts (a) and (c), respectively. The ω0, iD/uav = 0 contour in (a) and (c) indicates the stability limit,
χρ
∗(S, λ).

influence of χρ on the absolute frequency. An increase in χρ generally reduces the absolute frequency.
However, the sensitivity of the absolute frequency to χρ is relatively low over the range of χρ that is
physically relevant. The range of physically relevant values of χρ is discussed later. The influence of
χρ on the absolutely unstable mode is likely rooted in the baroclinic mechanism, which is the domi-
nant physical mechanism through which the density jumps affect the stability of this flow.26 Figure 6
uses two ordinate axes- one labeled asωD/uav and one labeled as f0,rD/uouter, where f0,r = ω0,r/2π.
We do this to demonstrate the relative values of these two classical frequency scalings, the first of
which is the natural nondimensionalization that occurs in model stability analyses, and the second
which is the classical empirical Strouhal scaling.

As noted above, the critical level of base flow density asymmetry, χρ
∗, is a function of S and λ.

This interdependence is shown in Figure 7(a), which plots the absolute growth rate as a function of
χρ and S for a given shear parameter, λ, and as a function of χρ and λ for a fixed S. For example,
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FIG. 8. Influence of base flow density and velocity asymmetry on the absolute (a) growth rate, ω0, iD/uav, and (b)
frequency, f0,rD/uouter, for S = 0.7 and λ =−2.

in the absence of base flow density asymmetry, and with a shear ratio of λ = −2, the critical density
ratio is roughly S = 0.55. However, when χρ = 1.0, the critical density ratio drops to S = 0.45.

To put some specific numbers to these calculation, assuming a reactant temperature of 1100 K,
with a 2100 K flame on one side and 2600 K flame on the other (temperatures roughly corresponding
to upper and lower reactant streams of φ = 0.5 and 1.0, respectively), then S = 0.5 and χρ = 0.15.
This flow is absolutely stable. If the leaner flame were to extinguish and its “burned” temperature
were to revert to that of the approach flow, then S = 0.7 and χρ = 0.7. This flow would be absolutely
unstable. This example shows the potential feedback between flame blow off and hydrodynamic sta-
bility that has been hypothesized by a number of workers.1,31 A value of χρ = 1.0 could be achieved
with 500 K reactants, a 2300 K flame branch on one side, and an extinguished branch on the other.

We next consider the effects of base flow velocity asymmetry. Figure 8 shows the absolute sta-
bility of the wake as a function of base flow velocity asymmetry, χu, and base flow density asym-
metry, χρ. The figure shows a color bar in addition to iso-contours to help elucidate the somewhat
complicated topology of the data. The figure shows that increases in the degree of base flow velocity
asymmetry have a stabilizing effect on the absolute instability mode. This result makes intuitive sense,
since increasing the base velocity asymmetry shapes the base flow to look less like a wake, and more
like a simple shear layer (which is convectively unstable for this value of forward to reverse flow
velocity). Interestingly, the stabilizing influence of the base velocity asymmetry is more sensitive
when χu > 0 and χρ > 0, which for this arrangement puts the stronger shear layer near the smaller
density jump. This makes physical sense from a group velocity point of view, since this makes the
faster forward flow the denser flow and the reversing or slower forward flow the less dense flow. This
high downstream momentum congifiguration may be reasoned to promote non-zero group velocity,
and thus absolute stability.

IV. EXPERIMENTAL DATA

This section presents experimental data obtained by Tuttle et al.,29 which was described in Sec-
tion I. The end of this section compares the available experimental results to the stability analysis to
demonstrate some of the predicted parametric dependencies. Results were obtained for three experi-
mental conditions, summarized in Table I. In the table, three equivalence ratios are shown: the equiva-
lence ratio at the flow centerline, φ, and the equivalence ratios estimated at the leaner and richer flame
branches, φL and φR, respectively. In this combustion scenario, the leaner flame branch generates a
smaller density jump, and the richer flame branch generates a bigger density jump. The values of φL
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TABLE I. Experimental conditions, including estimated equivalence ratios
at each flame branch.

G φ φR φL S χρ

0.0 0.51 0.51 0.51 0.2 0.0
0.5 0.45 0.70 0.20 0.3 0.3
1.0 0.27 0.77 0.0 0.6 1.1

and φR are estimated from the equivalence ratio gradients, G, reported in the work of Tuttle et al.29

Next, the values of S and χρ are estimated from an equilibrium calculation using the equivalence
ratios, φL and φR, and the preheat temperature reported in the work of Tuttle et al.29 We emphasize
the fact that S and χρ are simple parameters that are calculated from the data; they serve to indicate
the relative levels of density stratification and asymmetry between the three cases.

The experimental diagnostics used for this comparison, detailed in the work of Tuttle et al.,29

include low speed Particle Image Velocimetry (PIV) and 6 kHz chemiluminescence imaging. The fact
that only low speed PIV data are available precludes quantitative comparisons of the stability theory
and measured flow field but does allow us to fit the model to the time averaged velocity data to estimate
the stability parameters. For example, Figure 9(a) shows a slice of the measured time-averaged axial
velocity at x/D = 1. In order to determine a representative value of the Uouter and Uinner parameters
associated with this operating condition on the stability plot shown later in Figure 10, Figure 9 also
shows the fit of the measured data to the model profile presented earlier. The outer velocity was

FIG. 9. Measured time averaged velocity field, showing (a) example overlay of model on velocity data at x/D = 1, (b) axial
dependence of the Uouter and Uinner fits, and (c) the resulting axial dependence of λ. Plots are shown for the χρ = 0 case but
are representative of all cases.
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FIG. 10. “Zoomed out” view of the stability map from Figure 7(a), showing contours of absolute growth rate, ω0, iD/uav

Estimated locations of experimental conditions (see Table I) are marked with “x.”

calculated as the average axial velocity in the region of 1 < |y/D| < 1.5, and the inner velocity was
estimated as the average axial velocity in the region |y/D| < 0.5. Figures 9(b) and 9(c) show the axial
dependence of the Uouter and Uinner, and λ, which result from this procedure. The figure demonstrates
that λ is a function of axial position, with values on the order of λ = −2 for the first two bluff body
diameters. This highlights the importance of gleaning qualitative parametric dependencies from the
local stability analysis, rather than quantitative predictions of the absolute/convective stability tran-
sition. For all cases considered in this paper, the bluff body diameter was D = 9.6 mm, and the lip
velocity was ulip = 18.4 m/s.

The three cases listed in Table I are marked on a stability map as shown in Figure 10. The figure is
parameterized in terms of the density ratio S and the degree of base density asymmetry χρ. Figure 10
also indicates contours of absolute growth rate, also plotted in Figure 7, but over a broader parameter
space that covers the range of values of S and χρ that are investigated with this data set. Note that
the stability parameters estimated for the three experimental cases traverse the stability map across a
broad range of absolute growth rates.

We extracted flame edges from high speed chemiluminescence images to quantify the space-time
dynamics of the two flame branches independently, using the same procedure as detailed in Emerson
et al.20 The spatio-temporal evolution of the flame edge is quantified by the variable L (x, t). The
fluctuating flame position, L′(x, t), is obtained by subtracting the time averaged value of L (x, t), as
illustrated in Figure 11(b). Figure 11 shows examples of flames at two different levels of χρ, with the
extracted edges overlaid. Note that in Figure 11(b), coherent, large scale wrinkling is observed in the
lean flame branch (the top, emboldened one), but the flame is much smoother and incoherently wrin-
kled on the lower, rich flame. The appearance of this coherent wrinkling is highly intermittent, similar
to other experimental investigations of global mode oscillations of turbulent bluff body wakes.20

In order to better quantify the flame edge dynamics, we Fourier transform the flame edge displace-
ment, L′ (x, t). The Fourier transformed flame edge displacement is denoted

�
L̂L (x,St)� for the leaner

flame branch and
�
L̂R (x,St)� for the richer flame branch. Here, St is the Strouhal number, defined

as St = f D/ulip, where D is the bluff body diameter and ulip is the bluff body lip velocity. Figure 12
shows typical spectra of flame edge displacement oscillations for cases with and without base density
asymmetry. The figure shows a prominent narrowband feature near St = 0.11. We speculate that at
this frequency, the flame is wrinkling as the result of vortically induced motions that are excited by
background longitudinal acoustics. As evidence, the two flame branches move 180◦ out of phase with
each other at this frequency, indicating a varicose flow response like that typical of longitudinally
acoustically forced wakes.28 Therefore, we focus the analysis on a different spectral band where the
global wake mode is classically observed32 and predicted in the analyses shown in Figures 6 and 7,
i.e., in the range of 0.2 < St < 0.5.

In order to capture the dynamics associated with the global mode, we integrate the spectral en-
ergy of L̂′ in the range of 0.2 < St < 0.5, indicated by the gray shading in Figure 12. Following the
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FIG. 11. Series of chemiluminescence flame images for (a) symmetric density stratification remove bold line from part (a),
χρ = 0 and (b) asymmetric density stratification, χρ = 1.1. Flame edge detection is overlaid for both flame edges. The flame
edge with smaller density jump (upper flame edge) is emboldened in all frames of column (b) and is labeled in the second
frame of column (b).

procedure outlined in Emerson et al.,20 we use Parseval’s theorem to express this integrated spectral
energy as a root mean square fluctuation, denoted as L′rms. Figure 13 compares the axial dependence
of L′rms (x) for the leaner and richer flame branches (denoted L′L,rms and L′R,rms, respectively), for all
three values of χρ. The figure makes this comparison in two ways: by considering the average value
of L′rms between the two flame branches and by comparing the ratio of L′rms of one branch to that of
the other.

The results in Figure 13 show the influence of density asymmetry predicted by the stability
analysis. The influence of χρ is highly evident when considering the relative L′rms of the two flame
branches. For example, the low χρ cases exhibit equal values of L′rms for the two flame branches. In
contrast, the high χρ case shows quite different flame edge oscillation amplitudes, differing by a factor
of 3 for the leaner flame edge than for the richer flame edge. Referring to Figure 5, the corresponding
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FIG. 12. Ensemble averaged spectra of the leaner (lower density jump) flame edge displacement fluctuations for two values
of χρ. Gray shading indicates Strouhal number region spanning 0.2 < St < 0.5.

value of transverse velocity asymmetry predicted by the stability analysis is roughly 3. Moreover, the
flame branch with the largest oscillations is the leaner one (with the smaller density jump), which is
where the analysis showed that the largest transverse velocity fluctuations occur. This result supports
the discussion surrounding in Figure 4, which predicts that at high χρ, the global mode oscillations
should be higher on the side of the flow with the leaner flame than on the side with the richer flame.
Interestingly, χρ does not exhibit a significant impact on the value of L′rms averaged between the two
flame branches for cases with based density asymmetry. In other words, the augmented flapping of
the leaner branch is counteracted by diminished flapping of the richer branch.

The key finding of the comparison between experiment and model is that both clearly demon-
strate that the hydrodynamic oscillations should have greater magnitude at the leaner flame branch
than at the neighboring richer flame branch. This finding has interesting analogies to the symmet-
ric density profile case, which shows that absolute instability growth rates increase with decreasing
density ratio.25 For the case of symmetric base flow, the stabilizing effect of increased density ratio

FIG. 13. (a) Axial dependence of L′rms averaged for the two flame branches. (b) Ratio of L′rms for the leaner flame branch to
that of the richer flame branch.
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is associated with baroclinic torque. The baroclinic torque has been shown to be stabilizing,32 since
its oscillatory component tends to act out of phase with the other hydrodynamic mechanisms in the
wake.26 We also note the observation that the reversing flow, which is often associated with absolute
instability, has higher density on the side of the flow with the leaner flame. Therefore, the side of the
flow with the greater reverse flow momentum exhibits the larger hydrodynamic oscillations.

V. CONCLUSIONS

Hydrodynamic stability analyses of reacting bluff body wakes have parameterized the reacting
wake problem in terms of the density ratio and backflow ratio,25 the confinement,33 and the spatial
offset between the flame and the shear layer.20 A recent series of experiments performed by Tuttle
et al.29 has shown that base flow asymmetry is also an important stability parameter. In these exper-
iments, the bluff body was fueled with a spatially stratified equivalence ratio such that the density
field was asymmetric.

This paper extends prior stability analyses to include the effects of base flow asymmetry. The sta-
bility analysis predicts that increasing the degree of base flow density asymmetry has a destabilizing
effect. Additionally, the stability analysis indicates that increasing the degree of density asymmetry
distorts the classical sinuous mode, and in such a way that the side of the flow with the smaller density
jump exhibits larger pressure and velocity fluctuations. These results are compared to the experi-
mental results from Tuttle et al.29 This comparison supports the stability analysis and shows that at
high levels of base density asymmetry, the flame edge with the smaller density jump (the leaner flame
edge) exhibits high amplitude, coherent wrinkling.
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APPENDIX: STABILITY ANALYSIS FORMULATION DETAILS

This appendix outlines the details of the stability analysis. The stability analysis assumes a normal
modes decomposition for the linear flow perturbations in axial position, x, and in time, t. The linear
perturbations to axial velocity, radial velocity, pressure, and stream function take the form

u, v,p,ψ = Re
�
û (y), v̂ (y), p̂ (y), ψ̂ (y)	 exp {−iωt + ik x} . (A1)

Here ω is the complex radial frequency, k is the complex wave number, and the hat denotes a
complex function of transverse position, y (these “hat” quantities are referred to as the mode shapes).
These mode shapes are modeled in the three base flow regions (see Figure 3) according to the Rayleigh
equation,34 which is formulated here for top-hat base velocity profiles and linearly varying base den-
sity profiles

(ux,0 − c)
(
∂2ψ̂1

∂ y2 − k2ψ̂

)
=

1
ρ2

0

∂ρ0

∂ y


ρ0ψ̂1

du0

dy
− ρ0 (u0 − c) ∂ψ̂1

∂ y


. (A2)

The general solution to this form of the Rayleigh equation gives the transverse dependence of
the linear flow perturbations, which in regions of uniform base density is

ψ̂ (y) = Aek y + Be−k y (A3)

and in regions of linearly varying base density is

ψ̂ (y) = AJ0

(
ik (b + ay)

a

)
+ BY0

(
−ik (b + ay)

a

)
. (A4)

In Eq. (A4), J0 and Y0 are zero-order Bessel functions of the first and second kind, and a and b
define the linear density profile, ρb (y) = ay + b, depicted in Figure 3.
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The dispersion relation for this analysis consists of six algebraic equations. These equations are
derived from the boundary conditions at the channel walls and from matching conditions at the jump
discontinuities in the base flow. The boundary condition at each wall is the impermeability condition.
The matching conditions at the base flow jump discontinuities are continuity of displacement and
continuity of hydrodynamic pressure.

Six equations are formulated to satisfy the impermeability condition at each channel wall, and
to satisfy pressure and displacement matching conditions at the two base flow discontinuities. These
equations, written in dimensional form, reference the base flow model shown in Figure 3. The sub-
scripts attached to the coefficients A and B denote in which region of this model the coefficients govern
the dynamics.

Impermeability at the lower channel wall (at y = 0)

Aa + Ba = 0. (A5)

Impermeability at the upper channel wall (at y = H)

Ac exp (kH) + Bc exp (−kH) = 0. (A6)

Pressure matching at the lower base flow discontinuity (at y = δ1)

ik ρb1UbJ1

(
ik [b + aδ1]

a

)
Ab − ik ρb1UbY1

(
−ik [b + aδ1]

a

)
Bb

ρaUak exp (kδ1) Aa − ρaUak exp (−kδ1) Ba = · · ·

ik ρb1J1

(
ik [b + aδ1]

a

)
cAb − ik ρb1Y1

(
−ik [b + aδ1]

a

)
cBb + · · ·

k ρa exp(kδ1)cAa − k ρa exp (−kδ1) cBa.

(A7)

Displacement matching at the lower base flow discontinuity (at y = δ1)

−UaJ0

(
ik [b + aδ1]

a

)
Ab −UaY0

(
−ik [b + aδ1]

a

)
Bb +Ub exp (kδ1) Aa +Ub exp (−kδ1) Ba = · · ·

−J0

(
ik [b + aδ1]

a

)
cAb − Y0

(
−ik [b + aδ1]

a

)
cBb + exp (kδ1) cAa + exp (−kδ1) cBa.

(A8)

Pressure matching at the upper base flow discontinuity (at y = δ2)

ρcUck exp (kδ2) Ac − ρcUck exp (−kδ2) Bc + · · ·

ik ρb2UbJ1

(
ik [b + aδ2]

a

)
Ab − ik ρb2UbY1

(
−ik [b + aδ2]

a

)
Bb = · · ·

k ρc exp (kδ2) cAc − k ρc exp (−kδ2) cBc + · · ·

ik ρb2J1

(
ik [b + aδ2]

a

)
cAb − ik ρb2Y1

(
−ik [b + aδ2]

a

)
cBb.

(A9)

Displacement matching at the upper base flow discontinuity (at y = δ2)

Ub exp (kδ2) Ac +Ub exp (−kδ2) Bc −UcJ0

(
ik [b + aδ2]

a

)
Ab −UcY0

(
−ik [b + aδ2]

a

)
Bb = · · ·

exp (kδ2) cAc + exp (−kδ2) cBc − J0

(
ik [b + aδ2]

a

)
cAb − Y0

(
−ik [b + aδ2]

a

)
cBb .

(A10)

The six equations, listed from Eqs. (A5)–(A10), are arranged as a generalized Eigenvalue prob-
lem with the phase speed, c, as the Eigenvalue and the Coefficients Aa,Ba, Ab,Bb, Ac,Bc, as the
Eigenvector. This dispersion relation is solved by prescribing a value for the complex wave number,
k, solving the Eigenvalue problem for c, and then calculating the complex frequency as ω = k/c.
The spatio-temporal stability problem proceeds by solving this dispersion relation and numerically
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searching for saddle points of ω (k). The Briggs-Bers validity22,35 of the saddles is confirmed, and
then the absolute frequency, growth rate, and wave number are defined at the most amplified, valid
saddle, ω0 (k0).

Setting the velocity and density asymmetry parameters to zero, i.e., χu = χρ = 0, and removing
confinement, i.e., H/D → ∞, recovers Yu and Monkewitz’s result.25
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