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OSMOTIC AND IONIC REGULATION IN THE RED RIVER 

PUPFISH, CYPRINODON RUBROFLUVIATILIS

CHAPTER I 

INTRODUCTION
Homer Smith (1930) showed that saltwater-acclimated 

fishes swallowed their surrounding medium and subsequently 
absorbed most of the monovalent ions and water through the 

gut wall. A large part of the water and salts gained in 
this way were excreted extrarenally as a solution hyperos­
motic to the surrounding medium. A small fraction of the 
water was then used to form urine which was isosmotic or 
hypoosmotic to the blood. Smith (1930) also reported that 

drinking did not occur in freshwater and supposed that water 
and salt gain in this medium was through the oral and gill 

membranes.
The original model set forth by Smith (1930) for 

osmoregulation in fishes has undergone only slight modifi­
cation since its inception. We now know that freshwater fish­
es also drink their surrounding medium and that even in salt­
water-acclimated fishes, drinking accounts for only a small 
portion of the total salt and water turnovers (Motais and
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Maetz, 1965; Dali and Milward, 1969 ; Potts and Evans, 1967; 
Maetz and Skadhauge, 1968; Lotan, 1969). For both freshwater- 
and aaltwater-acclimated fishes, the larger portions of salts 
and water enter and exit via the gills (Fromm, 1968; Richards 
and Fromm, 1970; Motais, ejt al. 1969) .

Lotan (1969) showed that the most important mode of 

osmoregulation in Aphanius dispar (Cyprinodontidae) was an 
alteration in total body sodium and chloride content with 
changing salinity. Potts and Evans (1967) and Stanley and 

Fleming (1966) reported large changes in the total body 

sodium content of two species of Fundulus (Cyprinodontidae) 
when the external salinity was altered. Following Motais 
(1967) these fishes would be considered "osmoconformers".

By his reasoning osmoconformers exhibit internal osmotic 
pressure changes that directly follow changes in the external 

medium. Fishes such as the european eel, Anguilla (Motais, 
Garcia Romeu, and Maetz, 1966) and the mouth-brooder, Tilapia 

(Potts, et al, 1967), which undergo very little change in 
total ion content when the ambient salinity changes, would 
be considered "osmoregulators" by Motais (1967). The 

difference in the two terms used is one of degree since all 

teleosts studied have been shown capable, if fully acclimated, 

of maintaining relative constancy of their internal medium.
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Several species of the family Cyprinodontidae have 

been studied with regard to osmoregulation (F_. heteroclitus ; 

Potts and Evans, 1967; and Motais, ejt al. 1966; F_. kansae: 
Stanley and Fleming, 1966; dispart Lotan, 1969). Per­
haps no genus of this family has shown more tolerance to 
salinity than the type genus, Cvprinodon. Several species 
of Cvprinodon have been found in natural waters three to 
five times more saline than sea water (Barlow, 1958; Simpson 

and Gunter, 1956). They seem to survive equally well in 
freshwater, however, and the distribution of certain forms 
appears to be independent of ionic concentrations and of 

the ratios of various ionic combinations (Martin, 1968).
The Red River pupfish, Ç. rubrofluviatilis. inhabits 

the shallow waters of the western drainages of the Brazos 
and Red rivers in Texas and Oklahoma. Echelle (1970) found 
this species in waters ranging from 0.42 to 51.7 parts per 

thousand dissolved solids. L. G. Hill (personal communication) 

has maintained pupfish in the laboratory in 9% NaCl, and I 
have found the fish abundant in natural waters of 5% NaCl.

The purposes of this study were to examine the ability 

of this fish to osmoregulate and to identify some of the 
mechanisms involved.



CHAPTER II

METHODS AND MATERIALS

Animals and Media
Adult Ç. rubrofluviatilis, weighing 0.5 to 2.0 g, were 

taken by seine from the Prairie Dog Town Fork of the Red 

River near Hollis, Oklahoma, and Childress, Texas. After 
transportation to the Norman campus of the University of 
Oklahoma in styrofoam ice chests, all fish were maintained 

in aged tap water in 45-gallon aquaria. The aged tap water 
was continually refiltered through glass wool. The aquaria 

were located in a controlled temperature room at 21 C with 
an automatically regulated light-dark cycle (12 hours light: 

12 hours dark). Each aquarium accommodated a maximum of 

150 to 200 fish (ca. one fish per liter). The daily diet 
of the fish consisted of commercial fish food (Tetra-Min) 
and washed brine shrimp. Food was always withheld 24 hours 

before experimentation.

The animals were acclimated to two osmotic and ionic 
situations. Freshwater (hypoosmotic medium) -acclimated
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fish had been maintained as above for two weeks. The osmotic 
pressure of this medium ranged from 65 to 75 m-osmoles per 
Kg-water (expressed hereafter simply as m-osmoles) with a 

sodium and potassium content of 42 mEq/1 (milliequivalents 
per liter) and 5 mEq/1, respectively. Saltwater (hyperosmotic 
medium) -acclimated fish were those which, after the routine 

two week laboratory acclimation to freshwater, had been 
maintained for 2-21 days in aged, conditioned tap water to 
which sufficient reagent grade sodium chloride (Merke or 
Fisher) had been added to raise the osmotic pressure to a 

range of 966 to 1130 m-osmoles. This hyperosmotic medium 
had an average sodium and potassium content of 424 mEq/1 and 

5 mEq/1, respectively.

Collection and Preparation of Blood Samples 
Blood samples were obtained by blind cardiac puncture. 

The punctures were made with non-heparinized coagulation cap­

illary tubes (1.3-1.5 mm, i.d.) heated and drawn to fine 
tipped pipettes. About 30-50 ul of blood were collected 
from each animal. Fish were retrieved by netting, immediately 
blotted dry, and the body wall and heart punctured with a 

capillary pipette. The naked breast of this species 

facilitated the cardiac puncture. The blood filled the 
pipette quickly without application of suction. In some
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instances, slight contamination of the blood resulted from 
fluid in the pericardial cavity. This was ignored except in 

the case of the inulin space experiments where samples 
visibly contaminated were discarded. Hemolyzed samples were 
discarded in all experiments. The blood-filled capillary 
pipettes were centrifuged in a clinical centrifuge (Inter­
national Equipment Company) equipped with an hematocrit head 

at 7500 rpm for a sufficient time to pack the cells. All 
tests were conducted on the supernatant. This supernatant 

will be referred to as serum; however, no attempt was made 

to determine whether it was plasma or serum. After centri­
fugation, the collection pipettes were broken, and Beckman 
micropipettes were used to withdraw the serum.

Serum Osmotic Pressure 

Vapor pressure osmometry (Mechrolab, Model 301A) 
was used to measure serum osmotic pressures. Due to the small 

amount of serum obtained from each fish, the usual microtech­
nique employed with this instrument was not adequate. A 
special technique was used in this study (H.B. Haines, person­

al communication). This technique substituted #2 flint glass 

tubing approximately 12 inches long, heated and drawn to a 

fine tipped micropipette for the usual 50-ul microsyringe.
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The thermisitor bead was washed thoroughly with deionized, 
distilled water. The final drop of distilled water was drawn 

off by use of one of the large sample syringes. A drop of 
the serum sample was then placed on the thermisitor bead and 

allowed to remain a few seconds. This drop was then drawn 
off with a large syringe, and the step repeated. In all 

cases sample removal left the bead clear. A reading was 
taken on the next drop of sample and compared to NaCl 
standards. This technique eliminated the large sample 

volumes normally needed to rinse the bead; it also made 

sample delivery more accurate and the drop size smaller ; 
therefore, the serum sample was conserved. This method 

appeared to yield better precision than the usual micro­

technique. It also eliminated the necessity of pooling samples 
so that each reading represented one fish.

The serum osmotic pressure was examined upon transfer 

of fish from the freshwater medium to the saltwater medium 
described above. The animals were transferred in groups of 
varying number and sampled as groups at varying time periods 

up to 40 hours after transfer. The reciprocal transfer was 
not investigated.

Distribution and Quantification of Sodium,

Potassium, and Water
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Serum sodium and potassium levels were determined by 

flame-photometry (Baird-Atomic, Model KY-3). After dilution 
of 10 ul of serum in 20 ml of lithium chloride carrier 
solution (250 mg/1), the samples were compared to standard 
NaCl and KOI solutions. The sodium and potassium contents 

of bile were also examined. Bile was collected with capillary 

pipettes from the exposed gall bladder. Flame-photometry 
was also used to determine total body sodium and potassium 

content after liquefaction of the entire body of the animal 
in the minimal amount of concentrated nitric acid. In 
addition, a few determinations on the axial muscle tissue 

were done in the same manner. Total body water was deter­

mined by weighing before and after drying in an oven at 105 
C for 12 hours.

Apparent Sodium Space 
The method of Lahlou and Sawyer (1969) and Mayer and 

Nibelle (1969) was used to determine apparent sodium space. 

Each fish received a 10 ul intraperitoneal injection of a 

Z^NaCl (Nuclear Science and Engineering Corporation) solution 

with an activity of 4.7 uCi/ml. One hour in a 20 ml bath 
was allowed for distribution of the labelled sodium. The 
animals were then removed from the bath, rinsed briefly in 
deionized water and blotted dry on tissue paper. A blood
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sample was taken, and the radioactivity of 10 ul of serum, 
brought to a constant volume of 5 ml, was determined with 
a sodium iodide (Tl) crystal well scintillator (Nuclear- 
Chicago). The remaining serum and red blood cells in the 
collection pipette were then placed in a counting tube 
with the entire body of the fish and counted. This method 
of counting the non-homogenized body of the fish was shown 
by Potts and Evans (1967) to give the same result as 

homogenization and dispersion in a constant volume. Apparent 

sodium space was calculated using a formula similar to that 
given by Lahlou and Sawyer (1969):

Vint = ^  (1)
?intt

where Vĵ t̂ ~ the volume of distribution of sodium; = 
the total relative activity of the fish at time t; and 
Rint^ = the relative activity per unit volume of serum at 
time t.

Inulin Space
The distribution volume of car'boxyl-l^c-inulin

(International Chemical and Nuclear Corporation; Lot no.

2406-30) in fish acclimated to freshwater and saltwater
was determined. The fish were retrieved by netting, anes­
thetized in tricaine methanesulfonate (MS-222, Sandoz)
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solution sufficiently concentrated to cause a torpid state 
in one to two minutes, and placed ventral side up on moistened 
tissue paper under a dissecting microscope. Two microliters 

per fish of isosmotic sodium chloride solution containing 
Evan's blue dye and 20 uCi/ml of carboxyl-^'^C-inulin. (6.4 
uCi/mg) were injected into the caudal vein. No equal 
volume of blood was removed. The injection apparatus 

consisted of an eight inch long PE 60 tubing (Intramedic) 
connected on one end to a 50-ul microsyringe (Hamilton) 
and on the other end to a glass hypodermic needle. The 

glass hypodermic needle was made of capillary tubing (0.73 

to 0.75 mm, id.) which had been heated and drawn to a fine 
tip measuring approximately 100 microns in diameter. The 

shank of the needle was twice as long as the basal portion 

which attached to the PE 60 tubing. The PE 60 tubing served 
two functions: (1) it allowed maneuverability of the hypo­
dermic needle under the microscope unencumbered by the long 

microsyringe; and (2) it prevented radioactive contamination 
of the microsyringe. The hypodermic needle was inserted into 
the caudal vein in the area of the midline of the caudal 
peduncle region on the ventral surface of the fish at an 

angle of approximately 45° to the vertebral column.
Injection volumes were always measured from the same place
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on the microsyringe. After injection, the fish were placed 
into a bath of exactly 20 ml of the medium to which they 

had been acclimated. The optimum time allowed for distri­
bution of inulin in the fish had been established by 
preliminary experiments to be 15 to 20 minutes. Time periods 

shorter than this showed an elevated inulin space. Inulin 
space was the same after one hour as it was after 15 minutes. 
Since the radioactivity of the serum declined rapidly, the 
shortest time interval allowing maximum distribution was the 

most desirable. After distribution of the inulin, each fish 
was removed from its bath, and a blood sample taken. Samples 

of 100 ul of the distribution bath were also taken. Adsorp­

tion of inulin onto the sides of the beakers contai ning the 
20 ml bath was shown to be negligible. After weighing the 

fish, dissection at the site of injection was performed.

If any concentration of Evan's blue dye was found in the 

muscle tissue surrounding this site, the deteninations for 
that fish were discarded. The serum and bath samples were 
placed on planchettes, wetted with 95% ethyl alcohol and dried 

with a planchette spinner equipped with an infrared lamp. 
Standards were prepared by placing 10 ul of non-radioactive 

fish serum and 2 ul of the inulin-^^C injectate on a 

planchette, mixing, and wetting with 95% ethyl alcohol. Thus,
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no correction for self-absorption was made. The relative 
activity of the samples was determined with a thin window 

gas flow detector (Nuclear-Chicago). The radioactivity per 
unit volume of serum (l*nt)• the amount of inulin-^^C lost 
to the bath (I|xt)> the initial activity injected (I*), and 
the weight of the fish were used to calculate the distri­

bution volume of inulin inside the animal. This was assumed 

to be an estimation of total extracellular space (TECS).

TECS = £q-~. îëxt (2)
int

Thorson (1958, 1961) made several observations on 
the use of inulin to measure extracellular space which led 
him to believe that inulin did not penetrate minor fluid 

compartments in the large fishes he examined. The pericar­
dial and coelomic fluids of the pupfish could not be collected 
in sufficient volume to monitor; however, injections of 
inulin-l4c into the coelomic fluid showed that inulin rapidly 

entered the blood stream. This technique could not be used 
to determine inulin space, apparently because the loss of 
inulin from the blood was so rapid that the coelomic fluid 

never reached equilibrium with the blood.

Drinking Rate

Radioactive colloidal ^^®Au was used to determine the
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the drinking rates of freshwater- and saltwater-acclimated 
fish. This technique was similar to that of Motais, ejk ^  

(1969). To one liter of each acclimation medium, 250 uCi 
of colloidal ^^®Au were added. Disposable aquaria were 
used for this purpose since the decay product of 198#^ is 
stable mercury. Groups of varying numbers of acclimated 

fish were placed in these media and allowed to drink from 1 
to 2.5 hours. After this time, the animals were removed, 
blotted dry on tissue paper, and weighed. In some instances 

blood samples were removed and counted. The gut was removed 
and suspended in contant volume. Contamination of surgical 
instruments was kept to a minimum by using different instru­

ments to cut away the body wall and to remove the gut. All 
surgical instruments were washed and monitored after removal 
of each gut. Whole body counts were not useful since the 
colloidal gold apparently was adsorbed onto the surface of 

the fish.

Thalium activated sodium iodide well scintillation 
(Nuclear-Chicago) was used to determine the radioactivity 
of the gut and its contents. During the same counting period 

a 100 ul sample of the drinking solution, which had been 
removed at the same time the fish were removed, was counted. 

Thus, no correction for radioactive decay was necessary.
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Drinking rate was determined by comparison of the radioac­
tivity of the gut with the radioactivity of the drinking 

solution. Filtration of the drinking solution through 
Whatman #40 filter paper in a Büchner funnel just prior 
to each experiment was necessary to remove fine particulate 
matter. Apparently the fasted fish were capable of ex­

tracting from the water and ingesting fine particulate mat­
ter to which colloidal gold had adhered. When the drinking 
solution was not filtered, extremely high "drinking rates" 

resulted. Blood samples removed from the fish used in 
this experiment showed no significant amount of radioac­
tivity in the blood. Because the gut of this species is 

only about 1.5 times the total body length, loss of col­
loidal gold via the anus was evaluated by examining the 

distribution of radioactivity within the guts of several 
fish. Each gut was divided into thirds, designated the 
esophageal, middle, and anal segments. The percentage of 
total radioactivity in each segment was determined. About 
half of the fish were allowed to drink one hour while the 

other half drank for 2.5 hours. Only saltwater-acclimated 
fish were used in this part of the study because previous 

work had shown the greatest drinking rate occurred in salt­

water (Lotan, 1969; Potts and Evans, 1967; Maetz and Skad­

hauge, 1968). If anal loss did not occur in saltwater, loss
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in freshwater would be doubtful.

Steady State Sodium Kinetics 
The amount and rate of sodium efflux from pupfish in 

freshwater and saltwater were examined with the) use of 
22NaCl (Nuclear Science and Engineering Corporation). 
Saltwater-acclimated animals were loaded with ^^Na by 
placing each fish in an aerated 25 ml bath containing
11.3 uCi of activity. After an equilibration period of 12- 

14 hours, the fish were removed, rinsed for 3-5 minutes in 
non-radioactive medium and placed in a 20 ml efflux bath. 

Freshwater-acclimated fish were loaded with ^^Na by intra­
peritoneal injection of 10 ul of saline solution contain­
ing 5.65 uCi/ml radioactive sodium. After an equilibration 
time of 2-4 hours, the fish were removed, rinsed as above, 
and placed in a 20 ml efflux bath. Aliquots of 5 ml were 
removed from the bathing solutions at 30 minute time in­

tervals, counted in a solid well scintillation system (Nu­

clear-Chicago) , and returned to the efflux baths. Mixing 
of the bathing solutions was assured by constant aeration. 

After termination of each experiment a whole body count 
of the living fish was taken. Due to the long half-life 

of 22ua, 2.58 years, no correction for decay was necessary.
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An equation derived from that of Solomon (1960) for 

a two compartment, closed system was used to determine the 

sodium turnover rate. This equation treats the fish as one 
compartment with regard to sodium. Although Motais, et al. 
(1966) and Potts, ejk ^  (1967) showed that sodium kinetics 
in Platichthvs and Tilapia. respectively, were appropri­
ately described by a two compartment fish, their experi­
ments extended for much longer time periods than those 
reported here. The time limitation was imposed by evapora­

tion of the efflux bath and random counting error. These 
factors produced insufficent accuracy in sampling and 

counting as the radioactivity of the bath approached its 
maximum value (equilibrium). Therefore, although the pup­
fish may in fact have two compartments, with regard to 

sodium, only one, the so-called fast compartment, was seen.

Since the system was closed, the total amount of 
radioactivity in the system (Rq ) did not change; therefore, 

Rq = Rf + Rb (3)
where Rf = the radioactivity of the fish and Rjj = the 
radioactivity of the bath. Because the fish was in a medium 

to which it was acclimated, the system was in the steady 
state, and therefore, the flux of sodium out of the fish 
equalled the flux into the fish. It followed that
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-dRf dRi.,- —  - %12Rf - k2lRb (4)

where aiid k2 i represent the rate constants for sodium 
movement out of and into the fish, respectively. Rearran­
gement and integration of equation (4) yields

Rb = Req[l-e"^12(l + ||-)t] (5)

where R^g = the radioactivity of the bath at theoretical 
equilibrium, = the total sodium content (labelled plus 
unlabelled) of the fish and S2 = the total sodium content of 

the surrounding bath. In the saltwater medium S2 was much 
larger than thus, (1 + went to unity.

Equation (5) described the line for the appearance
22of Na in the bathing solution versus time (Figure 1). The

rate constant, ki2, could be found graphically by a semi-
logarithmic plot of the (Rgq - R^) values versus time.

When this was done k-ĵ2 ^12(1 + ) was the slope of the
S2

resulting straight line (Figure 2).

Lahlou and Sawyer (1969) showed that the exchangeable 

sodium pool (Na^) in Opsanus was more accurately represented

by

»ap = (Vint)(Hai) (6)
where Vint = Na space and Nai = serum sodium concentration.



Figure 1. Schematic representation of the two 
compartment closed system which describes the efflux of 
sodium from C. rubrofluviatilis in freshwater and saltwater 
(Solomon, 1960), The relative size of the rectangles indi­
cates the amount of sodium in each compartment (S,, Sg).
The fish, compartment one (small rectangle), was loaded with 
initial activity, R^. The radioactivity of the fish, R^, 
declined with time as 22ua moved into compartment two, the 
bath (large rectangle). The time course for the increasing 
activity of the bath, Rĵ , is shown in the accompanying 
graphs, with the equations for those lines. Motais (1967) 
described a similar system for Platichthvs flesus.
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Figure 2. Actual data for the appearance of ^^Na in 
an efflux bath surrounding Ç. rubrofluviatilis. Rgg is 
never reached but can be estimated as shown. The inset shows 
the arrangement of the data into the form of a straight line, 
the slope of which is the rate constant for the turnover of 
sodium.
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than the total body sodium content used hy Potts and Evans 
(1967); therefore, the total sodium efflux was
calculated as follows:

<2̂12 = ^12 (Nap) (7)

Non-steady State Sodium Kinetics 

Changes in the rate of sodium efflux were examined 
upon rapid transfer of pupfish from saltwater medium to:
(1) freshwater medium, (2) a sucrose solution which was isos- 

motic to the saltwater solution (16 mEq/1 Na; 1100 m-osmoles), 
(3) a medium made hyperosmotic to the saltwater solution with 

NaCl (706 mEq/1 Na; 1584 m-osmoles), and (4) freshwater 
containing 100 mM calcium chloride. All fish used in these 
experiments were saltwater-acclimated. The fish were loaded 

with Z^Na in the manner described in the previous section. 
After first examining the efflux of sodium in the acclimation 

medium (control), the fish were rapidly transferred to one 
of the experimental media and then transferred hack to a fresh 

control bath (Figure 4). The volume of bath in all cases was 
20 ml. This technique was similar to that used by Motais 

(1967), Motais, et al̂  (1966), and others. Because this system 
was not in a steady state with regard to sodium flux, these 
fluxes could not be measured. However, it was possible to
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in the external baths and calculate the percentage difference 

in sodium efflux rate in the various media (Motais, e;t al. 
1965) (Figure 4). Due to the possibility that a delayed 
onset regulation might be induced in the experimental media 
and to the fact that the sodium radio-specific activity of 

the fish was continuously declining (Motais, ejt al, 1966) , the 
fish were not retained in any of the three solutions for more 

than 30 minutes. The efflux baths were sampled at varying 
time periods in the same manner described for steady state 

determinations. Potts and Evans (1967) reported that handling 

F_. heteroclitus did not seem to effect its sodium fluxes. 
However, Mayer and Nibelle (1970) have reported large changes 

in sodium outflux of the european eel, A. anguilla, due to 
handling.

Solutions containing identical amounts of sodium 

(360 mEq/1) and having the same osmotic pressures (1000 

m-osmoles) but containing varying amounts of calcium chloride 
(0.0 mM, 14.7 mM, 29.4 mM, or 58.7 mM)- were used to test the 
effects of external calcium concentration on sodium efflux.

The 0.0 mM CaCl2 solution was used as the control bath.

Gill Cvtologv in Varving Salinitv 
The cytology of the gill tissue was examined in fish
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acclimated to freshwater and to saltwater. The gill tissue 

was fixed in Bouin's fluid, paraffin embedded, sectioned at 
seven microns, and stained with Harris' hematoxylin with 
eosin Y counterstain or Mallory's triple stain. Fish were 
also examined at 2, 4, 6, and 27 hour periods after transfer 

from freshwater to saltwater.



CHAPTER III

RESULTS

Serum Osmotic Pressure 

Although serum osmolality varied considerably among 
individuals, a definite pattern of acclimation to increased 
salinity was discernible (Figure 3). Freshwater-acclimated 

fish had a serum osmotic pressure of 321 t 5.1 (S.E.) m-os- 
moles (n=17). After transfer to saltwater, serum osmotic 
pressure rose sharply to 399 t 7.0 (S.E.) m-osmoles (n=57), 

an average increase of 78 m-osmoles during the first hour. 
After this time, a slower increase took place (38 m-osmoles/ 

hr). The mean peak value of 512 t 20.0 (S.E.) m-osmoles 
(n=37) was reached during approximately the fourth hour. At 

this time values ranged from 374 to 752 m-osmoles. In the 
period between the fourth and sixth hours, the osmotic pres­
sure declined rapidly (68 m-osmoles/hr). Between seven and 
eight hours after transfer the animals appeared to be ac­
climated to the saltwater situation [367 t 7.6 (S.E.) m-os­
moles (n=23)]. Mean values of serum osmotic pressure

23



Figure 3. Serum osmotic pressure changes in Ç. rubro- 
fluviatilis after transfer at time zero from freshwater (65 
m-osmoles/Kg-water) to saltwater (966 m-osmoles/Kg-^ater).
The fish appear to be fully acclimated after eight hours.
The vertical line is the range; the horizontal line is the ... 
mean; the solid bar is one standard deviation; the number of 
individuals tested are shown above and to the left of the 
solid bars.
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between 8 and 40 hours after transfer varied between 345 +

4.8 (S.E.) m-osmoles (n=7) and 378 t 7.5 (S.E.) m-osmoles 
(n=17)(24 hour value not shown in Figure 3) and probably 
represented normal fluctuations. The serum osmotic pressure 
in freshwater-acclimated fish averaged as much as 57 m-osmoles 
less than that of saltwater-acclimated fish (Table 1).

Distribution and Quantification of Sodium,
Potassium, and Water 

Serum sodium concentration in freshwater-acclimated 
fish was significantly lower than in saltwater-acclimated 

fish (Table 1). The difference in serum sodium content in 
the two groups of fish averaged 23 mEq/1. Assuming that the 
difference in sodium content also represents a difference in 
chloride content (which was not measured, but was the only 

other external variable), the difference in serum osmolality 
could be accounted for almost entirely by the change in 

sodium chloride content of the fish (assuming an activity 
coefficient of about 0.8).

Serum potassium levels in freshwater-acclimated fish 

were slightly significantly higher than in the saltwater group 
(Table 1). Both groups, however, showed the low serum potas­

sium levels characteristic of vertebrates.
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Table 1. Characteristics of external media and blood 
serum with regard to osmotic pressure, sodium concentra­
tion and potassium concentration in Ç. rubrofluviatilis 
acclimated to hyperosmotic and hypoosmotic media

Hyperosmotic
medium

Hypoosmotic
medium

p**
value

External osmotic 
pressure (m-osmoles 
per Kg water)

966 - 1130 65 - 75 --

External Na conc. 
(mEq/liter)

424 42 -

External K conc. 
(mEq/liter)

5 5 --

Serum osmotic 
pressure (m-osmoles 
per liter)

378 ±7.5* 
(17)

321 ± 5.1 
(17)

< 0.0001

Serum Na conc. 
(mEq/liter)

204 ± 3.8 
(18)

181 i 6.2
(15)

< OcOl

Serum K conc. 
(mEq/liter)

4.3 ± 0.5 
(18)

6.5 ± 0.6 
(15)

< 0.02

**Student's t-test
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The total body sodium content in both freshwater- and 

saltwater-acclimated fish was high (Table 2). Although the 

high sodium values in saltwater-acclimated fish might be 
explained by sodium in the gut or sodium adhering to the sur­
face of the fish, this was not a possibility in freshwater- 

acclimated fish. The total body sodium of freshwater- 
acclimated fish was slightly significantly lower than the 
total body sodium of saltwater-acclimated fish (Table 2). 

Another possible explanation of the high total body sodium 
values would be a large concentrated sodium pool(s) within 
the fish. Because the gall bladder in this species was 

quite large and always distended, its sodium content was 

determined. The sodium concentration of bile was much 
higher than that of serum in both media (Table 2), but 
averaged 3.4% of the apparent sodium space. Muscle tissue 

alone also shewed a high sodium content (Table 2). Of course, 

interstitial fluid and some blood and bone were included with 
the muscle, but it was doubtful that these would cause 

such high sodium values.
Total body and muscle potassium values were notably 

not significantly different in the two media (Table 2). The 

values of total body water in freshwater-acclimated fish were 

slightly larger but not significantly larger than those
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Table 2. Total body sodium, potassium, and water; bile 
sodium concentration; and muscle sodium and potassium con­
tent in C. rubrofluviatilis acclimated to hyperosmotic and 
hypoosmotic media

Hyperosmotic
medium

Hypoosmotic
medium

p**
va lue

Total body Na 
(mEq/Kg)

115.1 t 5.6* 
(10)

95.3 ± 4.9 
(10)

<0.02

Total body K 
(mEq/Kg)

44.2 ± 1.3 
(10)

45.6 ± 2.4 
(10)

<0.9
>0.5

Bile Na 
(mEq/liter)

325.3 ± 5.8 
(3)

302.4 i 12.0 
(5)

<0.3
>0.2

Muscle Na 
(mEq/Kg)

91.4 ± 12.1 
(5)

61.2 ± 8.8 
(6)

<0.001

Muscle K 
(mEq/Kg)

58.2 ± 7.3 
(5)

47.8 t 5.2 
(6)

<0.3
>0.2

Total body water 
{% body weight)

77.8 t 0.5 
(10)

79.5 t 0.9 
(10)

<0.2
>0.1

*Mean ± standard error (n)
** Student's t-test



29
acclimated to saltwater (Table 2). This indicated that the 
differences in ionic content of the two groups of fish were 

absolute differences and not a result of dehydration.

Apparent Sodium Space; Extra- and 
Intracellular Space 

The total extracellular space (inulin space) was the 
same in fish acclimated to either medium (Table 3). The 
values for freshwater sodium space were only slightly 
larger than the values obtained for freshwater extracellular 

space (Table 3). Upon acclimation to saltwater, sodium space 
greatly increased, but extracellular space remained unchanged 
(Table 3). Because total body water was unchanged, intra­
cellular space also remained the same in both media (Table 
3). The result appeared to be that intracellular sodium 
increased greatly upon acclimation of the fish to saltwater.

Drinking Rate
Drinking rate for fish in saltwater averaged about 1.4% 

of the body weight per hour during test periods varying 

between 1 and 2.5 hours (Table 4). Assuming all the 
sodium swallowed was absorbed, approximately 6.0% of the total 
exchangeable sodium pool was replaced by drinking every hour. 

In freshwater, significantly less of the medium was swallowed
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Table 3. Sodium space, extracellular and intracellular space 
in Ç. rubrof luviatilis acclimated to hyperosmotic and hypo- 
osmotic media

Hyperosmotic Hypoosmotic P** 
medium________ medium_____value

Sodium space 50.9 ± 2.8* 30.9 ± 2.3 <0.001
(ml/lOOg) (6) (7)

Extracellular space 25.2 ± 0.9 24.9 t 1.4 >0.5
(inulin space, (9) (14)
ml/lOOg)
Intracellular space 52.6 54.6
(total water minus 
inulin space, ca. 
ml/lOOg)

*Mean t standard error (n)
**Student's t-test
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Table 4. Rate of drinking and calculated rate of sodium 
gained from drinking of Ç. rubrofluviatilis in hyperosmotic 
and hypoosmotic media. The distribution of colloidal ^^®Au 
within the gut of saltwater-acclimated fish is shown

Drinking rate 
(ml/Kg/hr)
Sodium gained 
by drinking 
( mEq/Kg Ar)

Hyperosmotic
medium

14.4 ± 3.5* 
(20)
6.12

Hypoosmotic 
 medium
2.0 ± 0.4 

(12)
0.08

p**
value

< 0.02
> 0.01

Gut
segment

Esophageal segment 
Middle segment 

Anal segment

% radioactivity 
per segment

70.9 t 5.1 (9) 

21.0 t 4.4 (9) 
8.1 t 2.0 (9)

*Mean ± standard error (n)
**Student's t-test



32
(0.2% body weight per hour). This rate of drinking amounted 

to only 0.14% of the total exchangeable sodium pool per hour.
Loss of colloidal gold-198 via the anus was slight 

in the time period allowed for drinking. No distinguishable 
difference in distribution could be seen with respect to the 
two time periods used (1 and 2.5 hours); therefore, the data 
for all fish were combined. Most of the radioactivity of the 
gut was located in the esophageal segment (Table 4). Only 

a small amount was found in the anal segment.

Steadv State Sodium Kinetics 
The sodium turnover rate for fish in saltwater amounted 

to nearly one-half of the exchangeable sodium in the fish per 
hour (Table 5). The turnover rate was much lower in fresh­
water, but only slightly less than 40% of the turnover rate 

in saltwater (Table 5).

Non-steadv State Sodium Kinetics 
Upon rapid transfer of saltwater-acclimated fish into 

freshwater, a decrease in sodium efflux of over 50% occurred 
(Figure 4 and Table 6). This was an instantaneous decrease, 
which did not persist after transfer back to saltwater.

Some decrease was seen in the second control bath but this 
could be explained by the decrease in radio-specific activity
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Table 5. Sodium efflux rate constants and total sodium 
efflux in Ç. rubrofluviatilis acclimated to hyperosmotic 
and hypoosmotic media

Hyperosmotic Hypoosmotic P**
medium_________ medium_______ value

Efflux as %/hr 43.2 ± 2.6* 17.2 ± 2.2 <0.001
of exchangeable Na (17) (7)
Total Na efflux 44.9 ± 2.7 9.6 t 0.9 <0.001
(mEq/Kg Ar) (17) (7)

*Mean ± standard error (n)
**Student's t-test.
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of the fish in control transfers (Figure 5). Since the 
instantaneous drop in sodium efflux in freshwater could 

have been explained by the decrease in either the sodium 
content of the freshwater or the osmotic pressure of the 
freshwater, the fish were also tested in a sucrose solution 
which was isosmotic to the saltwater solution (Figure 6 
and Table 6). Sodium efflux in the sucrose solution 
decreased to one-third of its control value. This was a 

greater drop than that which took place in freshwater, 
probably because the sucrose solution contained only 16 

mEq/1 sodium.
Transfers from the saltwater acclimation solution into 

a hyperosmotic saline solution containing 706 mEq/1 sodium 

and having an osmotic pressure of 1584 m-osmoles, resulted 
in no change in the rate of sodium efflux (Figure 7 and Table 

6) .
Some experiments of a preliminary nature were done 

testing the effect of CaClg on the rate of sodium efflux. 

Transfers of fish from solutions containing no added CaCl2 

to solutions of 14.7, 29.4, or 58.7 mM CaCl2 resulted in 
decreases in sodium efflux rate of 13% (n = 2) , 23% (n =
1) and 19% (n = 2), respectively. Transfers from saltwater 

to freshwater containing 100 mM CaCl2 resulted in a 65%



Figure 4. Effect of transfer to freshwater on sodium 
flux in Ç,. rubrof luviatilis acclimated to saltwater (965 
m-osmoles). If a^, 3 2 » and ag are the slopes of the lines 
for the appearance of ^^Na in each bath, the relative rate 
(r) of sodium efflux in the experimental bath can be deter­
mined as follows:

232
r = -------a 1 + 3 3
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Figure 5. Effect of transfer to the same concentration 
on sodium efflux rate from C, rubrofluviatilis.
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Figure 6. Effect of transfer from saltwater medium 
to isosmotic sucrose medium on sodium efflux rate from Ç. 
rubrofluviatills.
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Figure 7. Effect of transfer to a higher salinity 
on sodium efflux rate from Ç. rubrofluviatilis acclimated to 
water of 966 m-osmole.
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Table 6. Changes in intensity of sodium efflux upon rapid 
transfer of Ç. rubrofluviatilis to media of different osmotic 
and ionic composition. The values are expressed as percent 
of the efflux rate of sodium in the control solution
Media trans­
ferred to

Control
media

% of 
control value

Freshwater Saltwater 48.7 t 2.1
(42 mEq/1 Na) (424 mEq/1 Na) (12)*
Saltwater + NaCl 
(706 mEq/1 Na)

II 95.1 ± 5.8 
(7)

Sucrose solution 
(1048 m-osmoles/Kg- 
water; 16 mEq/1 Na)

II 33.8 i 2.7 
(6)

*Mean i standard error (n)
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(n = 3) decrease in sodium efflux rate. Apparently short 
term exposure to CaCl2 does have a slight effect on the sodium 
efflux rate. Since sodium efflux was uninhibited by high 

chloride concentrations in saltwater, it was not likely 
that the high chloride concentrations in the CaCl2 solutions 
caused the decline in sodium efflux. For this reason these 
preliminary data were interpreted as a calcium effect.

Gill Cytology in Various Salinities 
Three main cell types were found in the outer layer 

of the filament tissue. Plate-like epithelial cells covered 

the primary and secondary filaments. Goblet shaped cells 

were frequently found on the filaments, but usually not in 
abundance. The goblet shaped cells were assumed to be mucous 
cells. The third cell type which was very large and highly 

eosinophilic, was located primarily between the secondary 
lamellae (Figure 8A). These cells answered the exact 
description of the so-called chloride or Keys-Willmer cells 

(Keys and Willmer, 1932; Getman, 1950; Doyle and Gorecki,
1961; Threadgold and Houston, 1961; Vickers, 1961; Virab- 
hadrachari, 1961; Burns and Copeland, 1950; Datta Munshi,

1964; Copeland, 1948). The cells stained violaceous with 

Mallory's triple stain, which was an indication of glandular 

tissue (Davenport, 1960).



Figure 8 (Plate). A . Transverse section of a primary 
filament of a saltwater-acclimated Ç. rubrofluviatilis. The 
position of the Keys-Willmer cells (k-w) is shown with res­
pect to the afferent (a) and efferent (e) arterioles and the 
secondary lamellae (si) (X430). B. Sagittal section of a 
primary filament showing an apical crypt (ac) shared by two 
Keys-Willmer cells (X930). C. Sagittal section of a pri­
mary filament of a saltwater-acclimated pupfish showing the 
normal arrangement of the cells between the secondary lamel­
lae. Note the large nuclei (n) (X930). D. Sagittal section
of a primary filament of a freshwater-acclimated Ç. rubro­
fluviatilis. Note the absence of apical crypts (X930).
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The cells seemed to stain with equal intensity whether

from fish c.cclimated to freshwater or saltwater. The only
major difference in the cells in the two media was the pre­
sence of a large apical crypt in the end of the cell in con­
tact with the external medium (Figure 8B, 8C). Frequently 
two cells shared the same apical crypt (Figure 8B). This 

crypt was rarely present in freshwater-acclimated fish (Fig­

ure 8D).
Circumstantial and some direct evidence has accumulated 

which relates these cells to osmoregulation, specifically 
chloride regulation (Conte and Morita, 1968; Philpott, 1966; 
Conte, 1965). These cells were very abundant in the pupfish 

whether in freshwater or saltwater. No evidence was obtained 
which directly related them to osmoregulation in the pupfish; 

however, the development of the apical crypt was found to be 
almost coincidental with the onset of osmotic regulation after 

transfer from freshwater to saltwater. The above conclusion 
was reached by a subjective analysis of the frequency of 

apical crypts in gill sections taken at various times after 
freshwater to saltwater transfer. Objective analysis was 

impossible due to the nature of the material. There 
appeared to be a progressive increase in the number of crypts 

from two hours to six hours. Very little difference could
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be noted between 6 hours and 27 hours. It must also be 

pointed out that apical crypts were infrequently found in 
freshwater-acclimated fish. Transfers of saltwater-acclimated 
fish back to freshwater showed that the apical crypts re­

mained frequent for up to eight days after transfer.



CHAPTER IV 

DISCUSSION

The serum osmotic pressures of pupfish in freshwater 
and saltwater were within the normal ranges expected for 
euryhaline teleosts in similar media (Parry, 1961; Hickman, 

1959; Yamashita, 1970a,b; and Lange and Fugelli, 1965). The 

serum osmotic pressures for the pupfish in saltwater stabil­
ized at values approximately 18% greater than the values 

for fish in freshwater. Pleuronectes and Gasterosteus 
(Lange and Fugelli, 1965) showed comparable increases in 

serum osmolality in saltwater of 20% and 17%, respectively, 

while Salmo salar showed a change of only 5% (Parry, 1961).

The initial serum osmo-concentration after abrupt 

transfer of pupfish from freshwater to saltwater probably 

resulted from both a loss of water and a gain of sodium and 

chloride. During acclimation the fish apparently increased 

water uptake, partially by drinking, and increased active

elimination of sodium chloride.
44
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The rapidity of acclimation to increased salinity 

was notable. A decrease in the rate at which the serum 
osmolality increased could be seen after one hour. The 

serum osmotic pressure began to decline during the fourth 
hour. After only eight hours the serum osmotic pressure had 
stabilized. This was a much shorter time than that required 

by S_. qairdnerii (80-170 hours, Houston, 1959) ; or the eel,
A. anguilla (50 hours. Keys, 1933), under similar conditions. 
The abrupt transfer study indicated that Ç. rubrofluviatilis 
was a very efficient and tolerant osmoregulator.

Serum sodium levels in the pupfish were comparable to 
values obtained for other teleosts (Phillips and Brockway, 

1958; Parry, 1961; Fromm, 1963; Chan, et al̂ , 1967; Butler, 
1966). The increased serum osmotic pressure in saltwater- 
acclimated fish was probably in large part caused by an 
increase in serum sodium and chloride content. The compara­

tively small difference in serum sodium levels in freshwater 
and saltwater indicated an efficient sodium regulatory 

mechanism.
The serum potassium levels were slightly larger in 

freshwater than in saltwater. This same situation was shown 
in F. kansae (Stanley and Fleming, 1964) and 0. kisutch 

(Miles and Smith, 1968), but the opposite was true of P.
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flesus (Lahlou, 1967) and A. anguilla (Chan, et al., 1967) .
The decreased serum potassium level in saltwater-acclimated 

fish may be due to the movement of potassium into the cells 
since muscle potassium content increased in saltwater but 

total body potassium content was the same in both media.
The total sodium content in fishes of slightly larger 

or similar size to the pupfish and in similar media (Foster, 
1969; Potts and Evans, 1967; and Lotan, 1969) averaged much 
below the values obtained for pupfish. From results of bile 

analysis, it was demonstrated that the high sodium values 
for the pupfish may in part result from concentrated sodium 

pools within the fish. However, axial muscle tissue also 
showed relatively high sodium levels. Total body potassium 

was low compared to total body sodium content. Since the 
diet of the fish contained ample potassium (100 mEq/Kg dry 

weight), the low body potassium levels were not due to lack 

of availability of this ion. These data indicated that Ç. 
rubrofluviatilis normally has a high sodium to potassium 

ratio.
This work partially answers the question raised by 

Mayer and Nibelle (1969) as to whether the increase in 
sodium space seen in saltwater-acclimated fishes was due to 
an increase in extracellular space or an increase in cellular 

sodium. In the pupfish there was a substantial increase in
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cellular sodium after saltwater acclimation. This appeared 
to have no debilitating effect on the animals. Because of 

the osmotic gradient, one of the initial effects of saltwater 
on freshwater acclimated fishes is to dehydrate them (Gor­
don, et al, 1965). If the cellular membranes are more 

permeable to water than to salts, the cells must lose water 
to remain isosmotic to the extracellular fluid. Movement 
of sodium ions into the cells would in effect conserve the 

cell water and stabilize the cell volume. As Mayer and 
Nibelle (1969) stated, this process would dilute the increased 
plasma sodium in saltwater and minimize large osmotic changes. 

Although cellular sodium increased in saltwater, the ratio of 
total cation concentrations (K and Na only) inside and out­
side the cells was almost the same in saltwater as in fresh­

water-acclimated fish (0.509 and 0.502, respectively).

The work of Lahlou, Henderson, and Sawyer (1969) on 
the stenohaline freshwater goldfish, Carassius auratus, showed 
that in a hyperosmotic medium extracellular space was almost 
doubled compared to the values obtained for the same species 

in freshwater. The small increase in sodium space they re­
corded was a result of the increased extracellular space, not 

a consequence of the movement of sodium into the cells.
Mayer and Nibelle (1969) showed that the eel, A. anguilla.
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underwent a significant increase in sodium space in salt­
water (22.5 to 29.1 ml/lOOg). Chan, et al, (1967) showed 

that muscle extracellular space increased from 7.7 ml/lOOg 
to 16.15 ml/lOOg (recalculated approximations) in the yellow 

eel after freshwater to sea water transfer, and from 10.25 

ml/lOOg to 12.46 ml/lOOg in the silver eel under similar 
conditions. Mayer and Nibelle (1969) did not specify 
if their eels were yellow or silver. If they were yellow 
eels, the increased sodium space in sea water could probably 

be accounted for by an increase in extracellular space.
This might not be true of the silver eel, for this form of 

A. anguilla is the better osmoregulator. Evans (1967) showed 
a relatively constant extracellular space in the blenny, 

Xiphister atropurpureus, in 10 to 100% sea water. Sodium 
space was not measured by Evans (1967) but serum sodium did 

increase about 20% in his animals after transferrai from 10 

to 100% sea water.
Extracellular space recorded for Ç. rubrofluviatilis 

was relatively large compared to the values obtained for 

most fishes tested. Xiphister had an extracellular space 

only half as large as the pupfish (Evans, 1967). Gordon, 
et al (1965) reported an extracellular space for the mud- 

skipper, Periopthalmus sobrinus, which was similar to that
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obtained for the pupfish. To my knowledge, extracellular 
space has never been determined on fishes as small as C_. 
rubrofluviatilis (0.5 to 2.0g). Thorson (1961) recorded 
very little difference in the extracellular space of marine 
and freshwater teleosteans (15 and 14% body weight, respec­

tively) . He used no teleosts which weighed less than one 
thousand grams. Thorson (1961) stated that some series of 
measurements in his work indicated a proportionately larger 

blood volume in smaller fish. Martin (1950) had shown this 
to be true with the dogfish shark, Squalus sucklii. Recal­
culation of the values for extracellular space reported for 

the hagfish, Mvxine (Cholette, Gagnon, and Germain, 1970) 
showed that inulin space per unit body weight tended to 

decrease as body weight increased. An indication of this same 

relationship was seen in C. rubrofluviatilis (Figure 9). Due 
to the narrow weight range, the relationship of body weight 
to TECS showed only a slightly significant negative correla­

tion [r = -0.5936; P(r = 0) <0.05]. Not enough data exist 
at this time to make a general statement on this point.

Drinking rates for fishes in sea water normally range 
from near zero to 2% body weight per hour (Foster, 1969;

Lotan, 1969; Potts and Evans, 1967; Dali and Milward, 1969; 
Evans, 1967; Potts, e;t al., 1967; Maetz and Skadhauge, 1968;



Figure 9, The relationship of total extracellular 
space (TECS) to body weight in Ç. rubrofluviatilis. The 
regression equation for the line shown was Y = 44,2 - 14.OX, 
and the correlation coefficient was -0.5936 (P<0.05).
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Evans, 1969a; and Motais, et al, 1969). The hourly drinking 
rate of pupfish in a medium similar to sea water averaged 

about 1.4% body weight, which puts them in the upper range 
of values reported for other species. The drinking rate of 
freshwater-acclimated pupfish was large compared to that of 
most other fishes; however, higher rates were reported for 

F. heteroclitus (Potts and Evans, 1967), Pelâtes. Periop­
thalmus (Dali and Milward, 1969), and A. dispar (Lotan,
1969). Dali and Milward (1969) have stated that regulation 
of water uptake was controlled by the gut wall, not the rate 
of drinking. Smith (1930) calculated that about three- 

quarters of the water swallowed was absorbed.
The increased drinking rate and, thus, the increased 

amount of sodium taken into the gut (6.12 mEq/Kg/hr) accounted 

for about 14% of the total sodium turnover in saltwater 
(44.9 1 2.7 mEq/Kg/hr). If it is assumed that in steady 

state conditions the sodium influx and efflux are equal, the 
remaining 86% (34.1 mEq/Kg/hr) must enter through the gill 
epithelium since the body wall seems impermeable (Fromm,

1968) . Although the drinking rate of A. dispar (Lotan.; 1969) 

was slightly higher than that of the pupfish, the relative 
percentages of sodium influx via the gut and gills were 
almost identical. The reason for this was, of course, that
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Aphanius had a larger total sodium flux (68.5 uM/g/hr). The 

rate constant for sodium turnover in pupfish in saltwater 
was similar to those obtained for Palates, PeriopthaImus. 
(Dali and Milward, 1969), P. flesus (Motais, et 1966), 

and F. heteroclitus (Potts and Evans, 1967). The rate was 

much lower than that obtained for Aphanius (Lotan, 1969) 
and much larger than those reported for Pholis gunnelis 
(Evans, 1969a), Xiphister (Evans, 1967), Cottus scorpius 

(Foster, 1969) or Opsanus tau (Lahlou and Sawyer, 1969).
The sodium turnover rate for pupfish acclimated to 

freshwater was very high (17.2 ± 2.2 %/hr). This was 
partially due to the large sodium content of the fresh­

water (42 mEq/1, equivalent to 10% sea water). However, this 
turnover rate was comparable to the turnover rate of F . hete­

roclitus in 40% sea water (Potts and Evans, 1967) and P. 

flesus in 50% sea water (Motais, at al, 1966). One might 
speculate that the pupfish in comparable salinities of 40 to 

50% sea water would have a higher sodium turnover rate than 
the above two fishes. The more closely related A. dispar had 

very high sodium turnover rates in sea water and freshwater 
compared to other fishes (Lotan, 1969) .

Only about 0.8% of the total sodium flux in fresh­
water acclimated pupfish was accounted for by drinking.
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The remaining sodium was probably gained via the gills.

The following factors indicated that C. rubrofluviati­

lis possesses the same type of branchial sodium regulation 

as that seen in the euryhaline flounder, P. flesus (Motais, 
1967; Motais et al. 1966) and the brine shrimp, Artemia salina 
(Thuet, Motais, and Maetz, 1968): (1) Upon abrupt transfer

of pupfish from saltwater to freshwater the rate of sodium 
efflux instantaneously decreased; (2) the rate of sodium 

efflux decreased as the ambient sodium content decreased;
(3) sodium efflux rate was not affected by external osmotic 
pressure; (4) variations in external chloride concentration 
apparently had no effect on sodium efflux rate.

The immediate decline in sodium efflux rate, when 
external salinity declined, was thought by Motais, et a^

(1966), to be due to the cessation of a sodium-sodium exchange 

diffusion mechanism. The uphill transport of ions was thought 
to be coupled with the downhill transport in a one for one 

exchange, which resulted in no net flux. Subsequently,
Maetz (1969) has reported that the sodium pump in the salt­

water acclimated teleost gill appears to be a potassium- 

sodium exchange pump. The hypothetical carrier exchanges 
internal sodium, for which it has a low affinity, for external 

potassium, for which it has a high affinity. The high sodium



54
turnover rates in sea water-acclimated fishes would appear 
to t>e due to a competition of the abundant ambient sodium 
with the sparse ambient potassium. Maetz (1969) has shown 
that potassium does have a direct effect on sodium kinetics. 

This theory, however, does not explain why there was no 
buildup of potassium within the animal.

Smith (1969) has shown that exchange diffusion of 
sodium does not occur in the brine shrimp. Furthermore, he 
has produced evidence indicating that sodium ion movement 

across the gill of A. salina was passive and independent.
The immediate decline in sodium efflux after exposure to 

media of decreased sodium content was a result of changes in 

the electrical potential difference and diffusional permea­
bility of the gill epithelium. Smith (1969) did show that 

chloride ions undergo exchange diffusion. W.T.W. Potts 

(personal communication) has stated that the sudden decrease 
in sodium efflux in sea water acclimated fish transferred 
abruptly to freshwater may be explained by a cessation of the 

sodium pump and a change in the electrical potential differ­

ence across the gill. The results of Smith (1969) have cast 
doubt on the explanation of sodium kinetics in fish proposed 
by Motais, et ^  (1966) and by Maetz (1969). Some indirect 
evidence obtained in the present report tended to support
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the idea of a carrier mediated transference of sodium advanc­

ed by Maetz (1969) and Maetz, et ^  (1959) . When Ç. rubro­
fluviatilis was transferred from saltwater to a greater 
salinity to which it was not acclimated, no increase in 

sodium efflux rate occurred. These data indicated that a 

limiting factor of some kind must be altered before the sod­
ium efflux rate can increase.

In the present study, it was seen that Ca++ had the 

effect of slightly reducing the rate of movement of sodium.
This effect of calcium has not been previously demonstrated 

in any fish. In fact, Motais, eb ^  (1966) assumed Ca++ had 
no effect on ion fluxes in the flounder. Breder (1933) has 
shown that certain marine fishes could survive transfer to 
freshwater saturated with calcium carbonate or calcium sulfate, 
but they could not survive transfer to untreated freshwater. 

Pickford, ejb al. (1966) have shown that addition of CaCl2 to 

the external medium promoted freshwater survival of hypophy- 
sectomized P.. kansae but not hypophysectomized F.. hetero­

clitus. In F. kansae survival was associated with mainten­

ance of normal serum sodium levels. Evans (1969b) and Motais, 
et al (1969) showed that freshwater fishes were more permeable 

to water than marine fishes. W.T.W. Potts (personal commun­
ication) has linked the increased Ca++ content of the marine 

environment to the reduction in water permeability.
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The large eosinophilic cells seen in the gills of C. 

rubrofluviatilis would seem to be identical to those of C. 

varieqatus examined by Karnacky (see p. 270, Conte, 1969). 
Hiltological studies by Conte (1965) and Philpott (1966) 

and the measurements of electrical potential difference 
across the gill epithelium by House (1963) and Motais and 
Maetz (1965), have produced evidence that these cells were 
involved in osmoregulation, specifically anion regulation. 

The significance of the apical crypt is not known. The 
saltwater induced formation of the crypt implies an osmoreg­

ulatory function. The crypt would obviously serve to in­
crease the amount of surface area in contact with the ex­

ternal medium.
In conclusion, Ç. rubrofluviatilis appears to fall 

into neither the category of "osmoconformer" nor "osmoregu­

lator" (Motais, 1967). The intracellular sodium content in 
saltwater-acclimated fish was greatly increased, but the 
total body sodium, potassium, and water changed relatively 

little. Within the range of salinities tested this fish was 
capable of extremely fast and efficient regulation of its 
serum osmotic pressure. Thus, this fish demonstrated char­
acteristics of both an osmoconformer and an osmoregulator.

The rather limited geographical range of C. rubro­

fluviatilis was thought by Echelle (1970) to be due to its



57
adaptation to a broad ecological niche resulting in a great 
deal of heterospecific competition in waters of low salinity. 

Because only a few species occupy the usually saline habitat 
of the pupfish, competition is greatly reduced. The study 
reported here has shown that salinity has probably posed no 
serious selective hazard to the pupfish. Osmoregulatory 

ability has apparently placed no restriction on this fish 
with respect to habitat.



CHAPTER V 

SUMMARY
The serum osmotic pressure in freshwater-acclimated 

rubrofluviatilis was 321 ± 5.5 (S.Eo) m-osmoles/Kg-water. 

Saltwater-acclimated fish had a serum osmotic pressure of 

378 ±7.5 (S.E.) m-osmoles/KgMvater. Acute transfer from 

freshwater to saltwater showed that the pupfish could 

acclimate to increased salinity within eight hours. During 
acclimation to saltwater the serum osmotic pressure reached 
a peak after four hours of 512 ±20.0 (S.E.) m-osmoles/ 

Kg-water.
Serum sodium concentration in pupfish acclimated to 

freshwater and saltwater was 181 i 6.2 (S.E.) mEq/1 and 

204 ± 3.8 (S.E.) mEq/1, respectively. Serum potassium was 
higher in freshwater [6.5 ± 0.6 (S.E.) mEq/1] than in 

saltwater-acclimated fish [4.3 ± 0.5 (S.E.) mEq/1].

Total body sodium content in freshwater-acclimated 

fish [95.3 ± 4.9 (S.E.) mEq/Kg] was only slightly signif­

icantly lower than total sodium in saltwater-acclimated

fish [115 ± 5.6 (S.E.) mEq/Kg]. Large sodium pools present
58
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within the fish may contribute to the high sodium values 
obtained as evidenced by the large sodium content of the 

bile. Muscle sodium content of pupfish was also high in 
both freshwater and saltwater. Total body water was not 
significantly different in freshwater and saltwater acclimated 

forms [79.5 t 0.9 (S.E.) % body weight and 77.8 t 0.5 (S.E.)
% body weight, respectively].

Apparent sodium space was 30.9 t 2.3 (S.E.) ml/lOOg 
in freshwater-acclimated fish and upon saltwater acclimation 
increased to 50.9 t 2.8 (S.E.) ml/lOOg. Extracellular space 

increased slightly after saltwater acclimation [24.9 ±
1.4 (S.E.) ml/lOOg to 25.2 t 0.9 (S.E.) ml/lOOg]..

Rate of drinking in saltwater was 1.4% body weight 
per hour while in freshwater it was 0.2% body weight 

per hour. Drinking in saltwater accounted for only 14% 
of the total sodium turnover per hour. The turnover rate 
of sodium was approximately 48% of the exchangeable sodium 

pool per hour in saltwater-acclimated pupfish.
Upon transfer of saltwater-acclimated fish to 

freshwater there was an immediate decrease in sodium efflux 

rate. Tliis decrease was directly related to the external 

sodium concentration and was not affected by chloride 
concentration or osmotic pressure.
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Increased Ca"*"*" concentration of the external medium 

caused a reduction of sodium efflux in all media.
In the gills of pupfish were found large eosino­

philic cells which answered the description of Keys-Willmer 
cells. In saltwater, these cells possessed a large apical 

crypt. This crypt was not present in freshwater.
Osmoregulation in the pupfish was discussed in terms 

of findings on other fishes. It was concluded that the 

tolerance of a high intracellular sodium level and the ability 
to regulate the composition of the blood serum were the 
most effective osmoregulatory mechanisms of Ç. rubrofluviatilis.
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