7 research outputs found

    Effect of cell shape and dimensionality on spindle orientation and mitotic timing

    Get PDF
    The formation and orientation of the mitotic spindle is a critical feature of mitosis. The morphology of the cell and the spatial distribution and composition of the cells' adhesive microenvironment all contribute to dictate the position of the spindle. However, the impact of the dimensionality of the cells' microenvironment has rarely been studied. In this study we present the use of a microwell platform, where the internal surfaces of the individual wells are coated with fibronectin, enabling the three-dimensional presentation of adhesive ligands to single cells cultured within the microwells. This platform was used to assess the effect of dimensionality and cell shape in a controlled microenvironment. Single HeLa cells cultured in circular microwells exhibited greater tilting of the mitotic spindle, in comparison to cells cultured in square microwells. This correlated with an increase in the time required to align the chromosomes at the metaphase plate due to prolonged activation of the spindle checkpoint in an actin dependent process. The comparison to 2D square patterns revealed that the dimensionality of cell adhesions alone affected both mitotic timings and spindle orientation; in particular the role of actin varied according to the dimensionality of the cells' microenvironment. Together, our data revealed that cell shape and the dimensionality of the cells' adhesive environment impacted on both the orientation of the mitotic spindle and progression through mitosis

    Dark-blood late gadolinium enhancement cardiovascular magnetic resonance for improved detection of subendocardial scar:a review of current techniques

    No full text
    For almost 20 years, late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) has been the reference standard for the non-invasive assessment of myocardial viability. Since the blood pool often appears equally bright as the enhanced scar regions, detection of subendocardial scar patterns can be challenging. Various novel LGE methods have been proposed that null or suppress the blood signal by employing additional magnetization preparation mechanisms. This review aims to provide a comprehensive overview of these dark-blood LGE methods, discussing the magnetization preparation schemes and findings in phantom, preclinical, and clinical studies. Finally, conclusions on the current evidence and limitations are drawn and new avenues for future research are discussed. Dark-blood LGE methods are a promising new tool for non-invasive assessment of myocardial viability. For a mainstream adoption of dark-blood LGE, however, clinical availability and ease of use are crucial

    Dark-blood late gadolinium enhancement cardiovascular magnetic resonance for improved detection of subendocardial scar: a review of current techniques

    No full text
    For almost 20 years, late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) has been the reference standard for the non-invasive assessment of myocardial viability. Since the blood pool often appears equally bright as the enhanced scar regions, detection of subendocardial scar patterns can be challenging. Various novel LGE methods have been proposed that null or suppress the blood signal by employing additional magnetization preparation mechanisms. This review aims to provide a comprehensive overview of these dark-blood LGE methods, discussing the magnetization preparation schemes and findings in phantom, preclinical, and clinical studies. Finally, conclusions on the current evidence and limitations are drawn and new avenues for future research are discussed. Dark-blood LGE methods are a promising new tool for non-invasive assessment of myocardial viability. For a mainstream adoption of dark-blood LGE, however, clinical availability and ease of use are crucial

    Quantification of myocardial scar of different etiology using dark- and bright-blood late gadolinium enhancement cardiovascular magnetic resonance

    No full text
    Abstract Dark-blood late gadolinium enhancement (LGE) has been shown to improve the visualization and quantification of areas of ischemic scar compared to standard bright-blood LGE. Recently, the performance of various semi-automated quantification methods has been evaluated for the assessment of infarct size using both dark-blood LGE and conventional bright-blood LGE with histopathology as a reference standard. However, the impact of this sequence on different quantification strategies in vivo remains uncertain. In this study, various semi-automated scar quantification methods were evaluated for a range of different ischemic and non-ischemic pathologies encountered in clinical practice. A total of 62 patients referred for clinical cardiovascular magnetic resonance (CMR) were retrospectively included. All patients had a confirmed diagnosis of either ischemic heart disease (IHD; n = 21), dilated/non-ischemic cardiomyopathy (NICM; n = 21), or hypertrophic cardiomyopathy (HCM; n = 20) and underwent CMR on a 1.5 T scanner including both bright- and dark-blood LGE using a standard PSIR sequence. Both methods used identical sequence settings as per clinical protocol, apart from the inversion time parameter, which was set differently. All short-axis LGE images with scar were manually segmented for epicardial and endocardial borders. The extent of LGE was then measured visually by manual signal thresholding, and semi-automatically by signal thresholding using the standard deviation (SD) and the full width at half maximum (FWHM) methods. For all quantification methods in the IHD group, except the 6 SD method, dark-blood LGE detected significantly more enhancement compared to bright-blood LGE (p < 0.05 for all methods). For both bright-blood and dark-blood LGE, the 6 SD method correlated best with manual thresholding (16.9% vs. 17.1% and 20.1% vs. 20.4%, respectively). For the NICM group, no significant differences between LGE methods were found. For bright-blood LGE, the 5 SD method agreed best with manual thresholding (9.3% vs. 11.0%), while for dark-blood LGE the 4 SD method agreed best (12.6% vs. 11.5%). Similarly, for the HCM group no significant differences between LGE methods were found. For bright-blood LGE, the 6 SD method agreed best with manual thresholding (10.9% vs. 12.2%), while for dark-blood LGE the 5 SD method agreed best (13.2% vs. 11.5%). Semi-automated LGE quantification using dark-blood LGE images is feasible in both patients with ischemic and non-ischemic scar patterns. Given the advantage in detecting scar in patients with ischemic heart disease and no disadvantage in patients with non-ischemic scar, dark-blood LGE can be readily and widely adopted into clinical practice without compromising on quantification

    SCIM: universal single-cell matching with unpaired feature sets

    No full text
    corecore