53 research outputs found

    Food for Thought: Linking Caloric Intake to Behavior via Sirtuin Activity

    Get PDF
    Sirtuins are thought to form crucial links between energy levels and cellular metabolism. Libert et al. now provide evidence that SIRT1 activity in the brain modifies mammalian emotional behavior via monoamine signaling and that changes in this pathway might contribute to human affective disorder

    Loss of Striatonigral GABAergic Presynaptic Inhibition Enables Motor Sensitization in Parkinsonian Mice

    Get PDF
    SummaryDegeneration of dopamine (DA) neurons in Parkinson’s disease (PD) causes hypokinesia, but DA replacement therapy can elicit exaggerated voluntary and involuntary behaviors that have been attributed to enhanced DA receptor sensitivity in striatal projection neurons. Here we reveal that in hemiparkinsonian mice, striatal D1 receptor-expressing medium spiny neurons (MSNs) directly projecting to the substantia nigra reticulata (SNr) lose tonic presynaptic inhibition by GABAB receptors. The absence of presynaptic GABAB response potentiates evoked GABA release from MSN efferents to the SNr and drives motor sensitization. This alternative mechanism of sensitization suggests a synaptic target for PD pharmacotherapy

    A method for biomarker measurements in peripheral blood mononuclear cells isolated from anxious and depressed mice: β-arrestin 1 protein levels in depression and treatment

    Get PDF
    A limited number of biomarkers in the central and peripheral systems which are known may be useful for diagnosing major depressive disorders and predicting the effectiveness of antidepressant (AD) treatments. Since 60% of depressed patients do not respond adequately to medication or are resistant to ADs, it is imperative to delineate more accurate biomarkers. Recent clinical studies suggest that β-arrestin 1 levels in human mononuclear leukocytes may be an efficient biomarker. If potential biomarkers such as β-arrestin 1 could be assessed from a source such as peripheral blood cells, then they could be easily monitored and used to predict therapeutic responses. However, no previous studies have measured β-arrestin 1 levels in peripheral blood mononuclear cells (PBMCs) in anxious/depressive rodents. This study aimed to develop a method to detect β-arrestin protein levels through immunoblot analyses of mouse PBMCs isolated from whole blood. In order to validate the approach, β-arrestin levels were then compared in naïve, anxious/depressed mice, and anxious/depressed mice treated with a selective serotonin reuptake inhibitor (fluoxetine, 18 mg/kg/day in the drinking water). The results demonstrated that mouse whole blood collected by submandibular bleeding permitted isolation of enough PBMCs to assess circulating proteins such as β-arrestin 1. β-Arrestin 1 levels were successfully measured in healthy human subject and naïve mouse PBMCs. Interestingly, PBMCs from anxious/depressed mice showed significantly reduced β-arrestin 1 levels. These decreased β-arrestin 1 expression levels were restored to normal levels with chronic fluoxetine treatment. The results suggest that isolation of PBMCs from mice by submandibular bleeding is a useful technique to screen putative biomarkers of the pathophysiology of mood disorders and the response to ADs. In addition, these results confirm that β-arrestin 1 is a potential biomarker for depression

    Global State Measures of the Dentate Gyrus Gene Expression System Predict Antidepressant-Sensitive Behaviors

    Get PDF
    Background Selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine are the most common form of medication treatment for major depression. However, approximately 50% of depressed patients fail to achieve an effective treatment response. Understanding how gene expression systems respond to treatments may be critical for understanding antidepressant resistance. Methods We take a novel approach to this problem by demonstrating that the gene expression system of the dentate gyrus responds to fluoxetine (FLX), a commonly used antidepressant medication, in a stereotyped-manner involving changes in the expression levels of thousands of genes. The aggregate behavior of this large-scale systemic response was quantified with principal components analysis (PCA) yielding a single quantitative measure of the global gene expression system state. Results Quantitative measures of system state were highly correlated with variability in levels of antidepressant-sensitive behaviors in a mouse model of depression treated with fluoxetine. Analysis of dorsal and ventral dentate samples in the same mice indicated that system state co-varied across these regions despite their reported functional differences. Aggregate measures of gene expression system state were very robust and remained unchanged when different microarray data processing algorithms were used and even when completely different sets of gene expression levels were used for their calculation. Conclusions System state measures provide a robust method to quantify and relate global gene expression system state variability to behavior and treatment. State variability also suggests that the diversity of reported changes in gene expression levels in response to treatments such as fluoxetine may represent different perspectives on unified but noisy global gene expression system state level responses. Studying regulation of gene expression systems at the state level may be useful in guiding new approaches to augmentation of traditional antidepressant treatments

    Retinal Neuroprotective Effects of Flibanserin, an FDA-Approved Dual Serotonin Receptor Agonist-Antagonist

    Get PDF
    Purpose: To assess the neuroprotective effects of flibanserin (formerly BIMT-17), a dual 5-HT1A agonist and 5-HT2A antagonist, in a light-induced retinopathy model. Methods: Albino BALB/c mice were injected intraperitoneally with either vehicle or increasing doses of flibanserin ranging from 0.75 to 15 mg/kg flibanserin. To assess 5-HT1A-mediated effects, BALB/c mice were injected with 10 mg/kg WAY 100635, a 5-HT1A antagonist, prior to 6 mg/kg flibanserin and 5-HT1A knockout mice were injected with 6 mg/kg flibanserin. Injections were administered once immediately prior to light exposure or over the course of five days. Light exposure lasted for one hour at an intensity of 10,000 lux. Retinal structure was assessed using spectral domain optical coherence tomography and retinal function was assessed using electroretinography. To investigate the mechanisms of flibanserin-mediated neuroprotection, gene expression, measured by RT-qPCR, was assessed following five days of daily 15 mg/kg flibanserin injections. Results: A five-day treatment regimen of 3 to 15 mg/kg of flibanserin significantly preserved outer retinal structure and function in a dose-dependent manner. Additionally, a single-day treatment regimen of 6 to 15 mg/kg of flibanserin still provided significant protection. The action of flibanserin was hindered by the 5-HT1A antagonist, WAY 100635, and was not effective in 5-HT1A knockout mice. Creb, c-Jun, c-Fos, Bcl-2, Cast1, Nqo1, Sod1, and Cat were significantly increased in flibanserin-injected mice versus vehicle-injected mice. Conclusions: Intraperitoneal delivery of flibanserin in a light-induced retinopathy mouse model provides retinal neuroprotection. Mechanistic data suggests that this effect is mediated through 5-HT1A receptors and that flibanserin augments the expression of genes capable of reducing mitochondrial dysfunction and oxidative stress. Since flibanserin is already FDA-approved for other indications, the potential to repurpose this drug for treating retinal degenerations merits further investigation

    Genetic Pharmacotherapy as an Early CNS Drug Development Strategy: Testing Glutaminase Inhibition for Schizophrenia Treatment in Adult Mice

    Get PDF
    Genetic pharmacotherapy is an early drug development strategy for the identification of novel CNS targets in mouse models prior to the development of specific ligands. Here for the first time, we have implemented this strategy to address the potential therapeutic value of a glutamate-based pharmacotherapy for schizophrenia involving inhibition of the glutamate recycling enzyme phosphate-activated glutaminase. Mice constitutively heterozygous for GLS1, the gene encoding glutaminase, manifest a schizophrenia resilience phenotype, a key dimension of which is an attenuated locomotor response to propsychotic amphetamine challenge. If resilience is due to glutaminase deficiency in adulthood, then glutaminase inhibitors should have therapeutic potential. However, this has been difficult to test given the dearth of neuroactive glutaminase inhibitors. So, we used genetic pharmacotherapy to ask whether adult induction of GLS1 heterozygosity would attenuate amphetamine responsiveness. We generated conditional floxGLS1 mice and crossed them with global CAGERT2cre∕+ mice to produce GLS1 iHET mice, susceptible to tamoxifen induction of GLS1 heterozygosity. One month after tamoxifen treatment of adult GLS1 iHET mice, we found a 50% reduction in GLS1 allelic abundance and glutaminase mRNA levels in the brain. While GLS1 iHET mice showed some recombination prior to tamoxifen, there was no impact on mRNA levels. We then asked whether induction of GLS heterozygosity would attenuate the locomotor response to propsychotic amphetamine challenge. Before tamoxifen, control and GLS1 iHET mice did not differ in their response to amphetamine. One month after tamoxifen treatment, amphetamine-induced hyperlocomotion was blocked in GLS1 iHET mice. The block was largely maintained after 5 months. Thus, a genetically induced glutaminase reduction—mimicking pharmacological inhibition—strongly attenuated the response to a propsychotic challenge, suggesting that glutaminase may be a novel target for the pharmacotherapy of schizophrenia. These results demonstrate how genetic pharmacotherapy can be implemented to test a CNS target in advance of the development of specific neuroactive inhibitors. We discuss further the advantages, limitations, and feasibility of the wider application of genetic pharmacotherapy for neuropsychiatric drug development

    Expanding the Repertoire of Optogenetically Targeted Cells with an Enhanced Gene Expression System

    Get PDF
    Optogenetics has been enthusiastically pursued in recent neuroscience research, and the causal relationship between neural activity and behavior is becoming ever more accessible. Here, we established knockin-mediated enhanced gene expression by improved tetracycline-controlled gene induction (KENGE-tet) and succeeded in generating transgenic mice expressing a highly light-sensitive channelrhodopsin-2 mutant at levels sufficient to drive the activities of multiple cell types. This method requires two lines of mice: one that controls the pattern of expression and another that determines the protein to be produced. The generation of new lines of either type readily expands the repertoire to choose from. In addition to neurons, we were able to manipulate the activity of nonexcitable glial cells in vivo. This shows that our system is applicable not only to neuroscience but also to any biomedical study that requires understanding of how the activity of a selected population of cells propagates through the intricate organic systems

    S 38093, a histamine H3 antagonist/inverse agonist, promotes hippocampal neurogenesis and improves context discrimination task in aged mice

    Get PDF
    Strategies designed to increase adult hippocampal neurogenesis (AHN) may have therapeutic potential for reversing memory impairments. H3 receptor antagonists/inverse agonists also may be useful for treating cognitive deficits. However, it remains unclear whether these ligands have effects on AHN. The present study aimed to investigate the effects of a 28-day treatment with S 38093, a novel brain-penetrant antagonist/inverse agonist of H3 receptors, on AHN (proliferation, maturation and survival) in 3-month-old and in aged 16-month-old mice. In addition, the effects of S 38093 treatment on 7-month-old APPSWE Tg2576 transgenic mice, a model of Alzheimer’s disease, were also assessed. In all tested models, chronic treatment with S 38093 stimulated all steps of AHN. In aged animals, S 38093 induced a reversal of age-dependent effects on hippocampal brain-derived neurotrophic factor (BDNF) BDNF-IX, BDNF-IV and BDNF-I transcripts and increased vascular endothelial growth factor (VEGF) expression. Finally, the effects of chronic administration of S 38093 were assessed on a neurogenesis-dependent “context discrimination (CS) test” in aged mice. While ageing altered mouse CS, chronic S 38093 treatment significantly improved CS. Taken together, these results provide evidence that chronic S 38093 treatment increases adult hippocampal neurogenesis and may provide an innovative strategy to improve age-associated cognitive deficits
    corecore