297 research outputs found

    Fast Matrix Factorization for Online Recommendation with Implicit Feedback

    Full text link
    This paper contributes improvements on both the effectiveness and efficiency of Matrix Factorization (MF) methods for implicit feedback. We highlight two critical issues of existing works. First, due to the large space of unobserved feedback, most existing works resort to assign a uniform weight to the missing data to reduce computational complexity. However, such a uniform assumption is invalid in real-world settings. Second, most methods are also designed in an offline setting and fail to keep up with the dynamic nature of online data. We address the above two issues in learning MF models from implicit feedback. We first propose to weight the missing data based on item popularity, which is more effective and flexible than the uniform-weight assumption. However, such a non-uniform weighting poses efficiency challenge in learning the model. To address this, we specifically design a new learning algorithm based on the element-wise Alternating Least Squares (eALS) technique, for efficiently optimizing a MF model with variably-weighted missing data. We exploit this efficiency to then seamlessly devise an incremental update strategy that instantly refreshes a MF model given new feedback. Through comprehensive experiments on two public datasets in both offline and online protocols, we show that our eALS method consistently outperforms state-of-the-art implicit MF methods. Our implementation is available at https://github.com/hexiangnan/sigir16-eals.Comment: 10 pages, 8 figure

    Dynamic Matrix Factorization with Priors on Unknown Values

    Full text link
    Advanced and effective collaborative filtering methods based on explicit feedback assume that unknown ratings do not follow the same model as the observed ones (\emph{not missing at random}). In this work, we build on this assumption, and introduce a novel dynamic matrix factorization framework that allows to set an explicit prior on unknown values. When new ratings, users, or items enter the system, we can update the factorization in time independent of the size of data (number of users, items and ratings). Hence, we can quickly recommend items even to very recent users. We test our methods on three large datasets, including two very sparse ones, in static and dynamic conditions. In each case, we outrank state-of-the-art matrix factorization methods that do not use a prior on unknown ratings.Comment: in the Proceedings of 21st ACM SIGKDD Conference on Knowledge Discovery and Data Mining 201

    Impact of magnetic activity on inferred stellar properties of main-sequence Sun-like stars

    Get PDF
    The oscillation frequencies observed in Sun-like stars are susceptible to being shifted by magnetic activity effects. The measured shifts depend on a complex relationship involving the mode type, the field strength, and spatial distribution of activity, as well as the inclination angle of the star. Evidence of these shifts is also present in frequency separation ratios that are often used when inferring global properties of stars in order to avoid surface effects. However, one assumption when using frequency ratios for this purpose is that there are no near-surface perturbations that are non-spherically symmetric. In this work, we studied the impact on inferred stellar properties when using frequency ratios that are influenced by non-homogeneous activity distributions. We generate several sets of artificial oscillation frequencies with various amounts of shift and determine stellar properties using two separate pipelines. We find that for asteroseismic observations of Sun-like targets we can expect magnetic activity to affect mode frequencies that will bias the results from stellar modelling analysis. Although for most stellar properties this offset should be small, typically less than 0.5 per cent in mass, estimates of age and central hydrogen content can have an error of up to 5 per cent and 3 per cent, respectively. We expect a larger frequency shift and therefore larger bias for more active stars. We also warn that for stars with very high or low inclination angles, the response of modes to activity is more easily observable in the separation ratios and hence will incur a larger bias

    Neural Attentive Session-based Recommendation

    Full text link
    Given e-commerce scenarios that user profiles are invisible, session-based recommendation is proposed to generate recommendation results from short sessions. Previous work only considers the user's sequential behavior in the current session, whereas the user's main purpose in the current session is not emphasized. In this paper, we propose a novel neural networks framework, i.e., Neural Attentive Recommendation Machine (NARM), to tackle this problem. Specifically, we explore a hybrid encoder with an attention mechanism to model the user's sequential behavior and capture the user's main purpose in the current session, which are combined as a unified session representation later. We then compute the recommendation scores for each candidate item with a bi-linear matching scheme based on this unified session representation. We train NARM by jointly learning the item and session representations as well as their matchings. We carried out extensive experiments on two benchmark datasets. Our experimental results show that NARM outperforms state-of-the-art baselines on both datasets. Furthermore, we also find that NARM achieves a significant improvement on long sessions, which demonstrates its advantages in modeling the user's sequential behavior and main purpose simultaneously.Comment: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. arXiv admin note: text overlap with arXiv:1511.06939, arXiv:1606.08117 by other author

    Recurrent Latent Variable Networks for Session-Based Recommendation

    Full text link
    In this work, we attempt to ameliorate the impact of data sparsity in the context of session-based recommendation. Specifically, we seek to devise a machine learning mechanism capable of extracting subtle and complex underlying temporal dynamics in the observed session data, so as to inform the recommendation algorithm. To this end, we improve upon systems that utilize deep learning techniques with recurrently connected units; we do so by adopting concepts from the field of Bayesian statistics, namely variational inference. Our proposed approach consists in treating the network recurrent units as stochastic latent variables with a prior distribution imposed over them. On this basis, we proceed to infer corresponding posteriors; these can be used for prediction and recommendation generation, in a way that accounts for the uncertainty in the available sparse training data. To allow for our approach to easily scale to large real-world datasets, we perform inference under an approximate amortized variational inference (AVI) setup, whereby the learned posteriors are parameterized via (conventional) neural networks. We perform an extensive experimental evaluation of our approach using challenging benchmark datasets, and illustrate its superiority over existing state-of-the-art techniques

    Beyond Exploratory: A Tailored Framework for Assessing Rigor in Qualitative Health Services Research

    Get PDF
    Objective: To propose a framework for assessing the rigor of qualitative research that identifies and distinguishes between the diverse objectives of qualitative studies currently used in patient-centered outcomes and health services research (PCOR and HSR). Study Design: Narrative review of published literature discussing qualitative guidelines and standards in peer-reviewed journals and national funding organizations that support PCOR and HSR. Principal Findings: We identify and distinguish three objectives of current qualitative studies in PCOR and HSR: exploratory, descriptive, and comparative. For each objective, we propose methodological standards that can be used to assess and improve rigor across all study phases—from design to reporting. Similar to quantitative studies, we argue that standards for qualitative rigor differ, appropriately, for studies with different objectives and should be evaluated as such. Conclusions: Distinguishing between different objectives of qualitative HSR improves the ability to appreciate variation in qualitative studies as well as appropriately evaluate the rigor and success of studies in meeting their own objectives. Researchers, funders, and journal editors should consider how adopting the criteria for assessing qualitative rigor outlined here may advance the rigor and potential impact of qualitative research in patient-centered outcomes and health services research
    corecore