37 research outputs found

    Comparison of Intra-Arterial Chemotherapy Efficacy Delivered Through the Ophthalmic Artery or External Carotid Artery in a Cohort of Retinoblastoma Patients

    Get PDF
    Purpose: To evaluate the efficacy of an external carotid artery (ECA) alternative route in intra-arterial chemotherapy (IAC) for treatment of retinoblastoma.Methods: In this retrospective, single-centre, case-control study, 98 retinoblastoma patients who received successful IAC were included. The drug delivery routes were the primary ophthalmic artery (OA) route and the ECA route when OA catheterization was not feasible.Results: A total of 337 successful IAC procedures were performed in our study, of which 32 (9.5%) procedures were performed through the ECA route. Eighteen eyes (18.4%) accepted at least one IAC through branches of the ECA. Statistical analysis showed that there was no significant difference in ocular clinical results (enucleation, death, recurrence and event-free) between the ECA and OA routes. No significant association was found between the route of drug delivery and the ocular survival time (p = 0.69). The use of ECA catheterization in at least one IAC cycle was not a predictor of enucleation (HR: 1.58; 95% CI: 0.56–4.46, p = 0.39). The increasing number of procedures through the ECA route did not increase the risk of enucleation (HR: 1.64; 95% CI: 0.42–6.39, p = 0.48).Conclusion: The ECA alternative route did not affect the efficacy of IAC in retinoblastoma. When the standard OA approach is not feasible, ECA system catheterization should be considered

    Deep learning based CT images automatic analysis model for active/non-active pulmonary tuberculosis differential diagnosis

    Get PDF
    Active pulmonary tuberculosis (ATB), which is more infectious and has a higher mortality rate compared with non-active pulmonary tuberculosis (non-ATB), needs to be diagnosed accurately and timely to prevent the tuberculosis from spreading and causing deaths. However, traditional differential diagnosis methods of active pulmonary tuberculosis involve bacteriological testing, sputum culturing and radiological images reading, which is time consuming and labour intensive. Therefore, an artificial intelligence model for ATB differential diagnosis would offer great assistance in clinical practice. In this study, computer tomography (CT) scans images and corresponding clinical information of 1160 ATB patients and 1131 patients with non-ATB were collected and divided into training, validation, and testing sets. A 3-dimension (3D) Nested UNet model was utilized to delineate lung field regions in the CT images, and three different pre-trained deep learning models including 3D VGG-16, 3D EfficientNet and 3D ResNet-50 were used for classification and differential diagnosis task. We also collected an external testing set with 100 ATB cases and 100 Non-ATB cases for further validation of the model. In the internal and external testing set, the 3D ResNet-50 model outperformed other models, reaching an AUC of 0.961 and 0.946, respectively. The 3D ResNet-50 model reached even higher levels of diagnostic accuracy than experienced radiologists, while the CT images reading and diagnosing speed was 10 times faster than human experts. The model was also capable of visualizing clinician interpretable lung lesion regions important for differential diagnosis, making it a powerful tool assisting ATB diagnosis. In conclusion, we developed an auxiliary tool to differentiate active and non-active pulmonary tuberculosis, which would have broad prospects in the bedside

    Core-shell SiC/SiO2 heterostructures in nanowires

    No full text
    This paper presents a simple vapour deposition method for one-step synthesis of SiC//SiO2 core-shell heterostructured nanowires. The phases, structures and morphologies of the synthesized core-shell heterostructures are systemically studied by field emission scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and high-resolution transmission electron microscopy. The results show that these heterostructures consist of a single crystalline SiC core of 20∼30 nm diameter covered by a uniform layer, about 15 nm thickness of amorphous SiO2. Such heterostructures were grown based on the vapour–solid mechanism and the deposition way has an important influence on their morphology. A unique optical property has also been found in their photoluminescence spectra that have blue shift relative to the bulk SiC

    Metal-organic framework-derived nanocomposites for electrocatalytic hydrogen evolution reaction

    No full text
    The rapid development of hydrogen energy is strongly dependent on the economic and efficient production of hydrogen. The electrocatalytic splitting of water to molecular hydrogen via the hydrogen evolution reaction (HER) provides an appealing solution for producing high-purity hydrogen, but low-cost and highly active electrocatalysts are required for HER. Among currently investigated HER electrocatalysts, metal-organic framework (MOF)-derived nanocomposites constructed from transition metals (TMs)/TM compounds (TMCs) and carbon materials offer extremely promising and attractive HER activities because of their unique properties, such as tunable compositions, readily regulated electronic structures, controllable morphologies, and diverse configuration. Herein, this article provides a comprehensive overview of MOF-derived nanocomposites as HER electrocatalysts for water splitting. It begins with the introduction of the fundamentals of electrocatalytic HER. Afterwards, several ingeniously designed strategies for improved MOF-derived HER electrocatalysts are meticulously summarized and discussed, with special emphasis on the component manipulation of the TMs/TMCs, carbon matrix modifications, morphology tuning and electrode configuration engineering. Finally, future perspectives on the development of these nanocomposites as HER electrocatalysts are proposed.This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51672049, 51871060, 51727801 and 51831009), Research Grant for Talent Introduction of Fudan University, China (Grant No. JJH2021103), the China Postdoctoral Science Foundation (Grant No. 2018M640337 and 2019T120301), the Recruitment Program of Global Youth Experts and Fudan’s Undergraduate Research Opportunities Program, FDUROP

    Porous Spinel ZnxCo3–xO4 Hollow Polyhedra Templated for High-Rate Lithium-Ion Batteries

    No full text
    Nanostructured metal oxides with both anisotropic texture and hollow structures have attracted considerable attention with respect to improved electrochemical energy storage and enhanced catalytic activity. While synthetic strategies for the preparation of binary metal oxide hollow structures are well-established, the rational design and fabrication of complex ternary metal oxide with nonspherical hollow features is still a challenge. Herein, we report a simple and scalable strategy to fabricate highly symmetric porous ternary ZnxCo3–xO4 hollow polyhedra composed of nanosized building blocks, which involves a morphology-inherited and thermolysis-induced transformation of heterobimetallic zeolitic imidazolate frameworks. When tested as anode materials for lithium-ion batteries, these hollow polyhedra have exhibited excellent electrochemical performance with high reversible capacity, excellent cycling stability, and good rate capability.ASTAR (Agency for Sci., Tech. and Research, S’pore

    Growth of tapered SiC nanowires on flexible carbon fabric : toward field emission applications

    No full text
    Tapered silicon carbide (SiC) nanowires were directly grown on the surface of flexible carbon fabric by a chemical vapor deposition process. The products were systemically characterized by X-ray diffraction, field emission scanning electron microscopy, high-resolution transmission electron microscopy, selected area electronic diffraction, and energy-dispersive X-ray spectroscopy. The results revealed that the tapered nanowires were of single crystalline β-SiC phase with the growth direction along [111] and had a feature of zigzag faceting over the wire surfaces. Such faceting was created by a quasi-periodic placement of twinning boundaries along the wire axis, which can be explained by surface energy minimization during the growth process. Based on the characterizations and thermodynamics analysis, the Fe-assisted vapor–liquid–solid (VLS) growth mechanism of tapered SiC nanowires was discussed. Furthermore, field emission measurements showed a very low turn-on field at 1.2 V μm–1 and a high field-enhancement factor of 3368. This study shows that SiC nanowires on carbon fabric have potential applications in electronic devices and flat panel displays

    Channel morphology effect on water transport through graphene bilayers

    No full text
    The application of few-layered graphene-derived functional thin films for molecular filtration and separation has recently attracted intensive interests. In practice, the morphology of the nanochannel formed by the graphene (GE) layers is not ideally flat and can be affected by various factors. This work investigates the effect of channel morphology on the water transport behaviors through the GE bilayers via molecular dynamics simulations. The simulation results show that the water flow velocity and transport resistance highly depend on the curvature of the graphene layers, particularly when they are curved in non-synergic patterns. To understand the channel morphology effect, the distributions of water density, dipole moment orientation and hydrogen bonds inside the channel are investigated, and the potential energy surface with different distances to the basal GE layer is analyzed. It shows that the channel morphology significantly changes the distribution of the water molecules and their orientation and interaction inside the channel. The energy barrier for water molecules transport through the channel also significantly depends on the channel morphology.MOE (Min. of Education, S’pore)Published versio

    Molecular dynamics study of pressure-driven water transport through graphene bilayers

    No full text
    The pressure-driven water transport inside the nanochannel formed by GE bilayers is studied via molecular dynamics simulation. The effects of flow driving pressure and channel size, as well as interaction strength between the water molecules and the GE bilayer are investigated and understood by exploring the distribution of the water molecules, their average velocity, and the friction between them and the channel walls. Ultrafast water flow rate is observed and different channel size dependences of the water flow rate are discovered for weak and strong interaction strengths. The layered water structure inside the GE bilayer is found to play a significant role in influencing the water flow rate. This study is of significance for the design and application of GE-based nanomaterials in future nanofiltration and water purification technologies
    corecore