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Active pulmonary tuberculosis (ATB), which is more infectious and has a higher

mortality rate compared with non-active pulmonary tuberculosis (non-ATB),

needs to be diagnosed accurately and timely to prevent the tuberculosis from

spreading and causing deaths. However, traditional differential diagnosis

methods of active pulmonary tuberculosis involve bacteriological testing,

sputum culturing and radiological images reading, which is time consuming

and labour intensive. Therefore, an artificial intelligence model for ATB

differential diagnosis would offer great assistance in clinical practice. In this

study, computer tomography (CT) scans images and corresponding clinical

information of 1160 ATB patients and 1131 patients with non-ATB were

collected and divided into training, validation, and testing sets. A 3-

dimension (3D) Nested UNet model was utilized to delineate lung field

regions in the CT images, and three different pre-trained deep learning

models including 3D VGG-16, 3D EfficientNet and 3D ResNet-50 were used

for classification and differential diagnosis task. We also collected an external

testing set with 100 ATB cases and 100 Non-ATB cases for further validation of

the model. In the internal and external testing set, the 3D ResNet-50 model

outperformed other models, reaching an AUC of 0.961 and 0.946, respectively.

The 3D ResNet-50 model reached even higher levels of diagnostic accuracy

than experienced radiologists, while the CT images reading and diagnosing

speed was 10 times faster than human experts. The model was also capable of

visualizing clinician interpretable lung lesion regions important for differential

diagnosis, making it a powerful tool assisting ATB diagnosis. In conclusion, we

developed an auxiliary tool to differentiate active and non-active pulmonary

tuberculosis, which would have broad prospects in the bedside.
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1 Introduction

Pulmonary tuberculosis (TB) is one of the top ten causes of

death throughout the world and remains a major public health

issue (Force et al., 2016; Ankrah et al., 2018). In 2020, 9.87million

cases of TB were recorded globally, with an incidence rate of

127 per 100,000. Among the 30 countries with a high TB burden,

China ranks the second in the estimated pulmonary TB incidence

after India (2.59 million) (Harding, 2020). Tuberculosis is caused

by Mycobacterium tuberculosis, and most patients with

Mycobacterium tuberculosis infection are asymptomatic, which

is known as latent tuberculosis infection. Without timely and

proper treatment, 10% of patients with latent infection will

progress to active pulmonary tuberculosis (ATB), whose

mortality rate is up to 50% at present (Klann et al., 2019).

According to statistics, there are about 20 million existing

active TB cases worldwide, and about 8–10 million new cases

of TB are diagnosed each year (Zhu et al., 2020). Tuberculosis

occurs in every corner around the globe, while Asia is the place

with the highest incidence of tuberculosis, accounting for 60% of

the global incidence (Ankrah et al., 2018; Collaborators, 2018). In

clinical practice, there are still many challenges in the accurate

detection and diagnosis of ATB. In different parts of China, for

example, underdiagnoses and underreporting of TB is still

prevalent in large general hospitals of eastern cities with better

health care services, and the scarcity of medical resources in the

rural areas of central and western regions leads to even lower TB

detection rates and more serious underdiagnoses (Martini et al.,

2020).

The gold standard for TB diagnosis is the TB smear and

culture, but it takes a long time to finish a single test of

Mycobacterium tuberculosis culture. To make it worse, the

proportion of the bacillus-negative cases is as high as 30%–

40%, implying that half of the patients with active TB are unable

to achieve a definitive diagnosis of TB by means of

Mycobacterium tuberculosis culture (Martini et al., 2020). In

addition, molecular biology diagnostic techniques such as

GeneXpert and TrueNAT have improved the speed and

accuracy of diagnosing ATB to a large extent, but these tests

increase the cost for diagnosis (Suen et al., 2015; Walzl et al.,

2018). Therefore, cheaper and faster radiological imaging

diagnostic methods are of great importance for the diagnosis

of tuberculosis, such as chest radiography and computer

tomography (CT). Despite of the fact that chest radiographs

can be used to screen for TB, they are less sensitive and accurate

than CT scans in terms of TB diagnosis, since CT scans are much

more sensitive in the detection and characterisation of focal

microscopic lesions in the lung, diffuse lesions in the lung

parenchyma and mediastinal lymph node enlargement.

However, the efficiency and accuracy of diagnosis based on

CT scans are heavily dependent on the experience of the

physician (Yang et al., 2019; Wang et al., 2021). The lack of

physicians specialized in radiology makes it difficult to ensure the

overall efficiency and accuracy of ATB diagnosis by CT images in

clinical practice in many places. In addition, there are many

different features and characteristics in the CT scan images of TB

patients, which have proved to be either coexisting or

interchangeable, making it more difficult to distinguish ATB.

These obstacles pose a significant challenge to the physicians in

terms of CT images reading, making the diagnosis of ATB a

difficult and time-consuming task.

Recently, the application of radiomics (Lambin et al., 2012)

and deep learning in TB diagnosis has shown good results,

especially in utilizing the deep learning convolutional neural

networks (CNNs). Li et al. used a 3D CNN model to distinguish

patients with active TB from healthy individuals with an accuracy

of 89.2% (Li et al., 2021). Wang et al. developed a 3D ResNet

model for identifying non-tuberculous mycobacterial lung

disease and Mycobacterium tuberculosis-like lung disease with

an area under the receiver operating characteristic curve (AUC)

value of 0.86 (Wang et al., 2021). Hwang et al. developed a deep

learning automatic detection algorithm using chest radiographs,

reaching a sensitivity of 94.3% and a specificity of 91% (Hwang

et al., 2019). Khan et al. trained a CNN to calculate the probability

of active and cured TB utilizing chest radiographs, and the AUC

value of the model was higher than that of a pulmonologist (Khan

et al., 2020). Yang et al. constructed a deep network model

combining UNet and fast RCNN, which was able to detect and

identify TB lesions and achieved significant performance (Yang

et al., 2019). In short, deep learning techniques have been

successfully applied to the analysis of the medical images, so

in this context, automatic differential diagnosis of active and

inactive TB disease based on deep learning will hold considerable

promise.

In this study, we made use of 3D ResNet-50, a type of 3D

CNN model, to distinguish active pulmonary tuberculosis

from non-active pulmonary tuberculosis based on CT scans

images. To the best of our knowledge, this was the first attempt

utilizing 3D ResNet-50 for active pulmonary tuberculosis

diagnosis. The automatic diagnosis model also provided

class activation maps (CAMs) on the CT scan images to

visualize the most indicative areas for diagnosis, allowing

further interpretation into the artificial intelligence (AI)

diagnosis models and physician-AI collaboration in the

bedside. With a clinician-machine competition experiment,

the 3D ResNet-50 ATB diagnosis algorithm was shown to have

both human expert level diagnostic capabilities and fast

diagnosis speed.
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2 Materials and methods

2.1 Study setting and population

This study provided a retrospective analysis of pulmonary

infection cases between January 2018 and December 2020 at the

First People’s Hospital of Kashgar Region. The study was

approved by the institutional review board of the participating

hospitals, waiving the requirement of informed consent for each

patient. Tuberculosis cases were classified as active TB cases or

non-active TB cases according to the diagnostic criteria

documented in the People’s Republic of China health industry

standard “WS196-2017 Classification of Tuberculosis” (Liu and

Zhou, 2018). Diagnostic criteria for active TB cases were as

follows: 1) pathogenetically positive for Mycobacterium

tuberculosis; 2) clinical signs and symptoms associated with

TB, including cough, sputum, fever, night sweats, chest pain,

and wasting; 3) imaging manifested by single or multiple

manifestations such as solid lesions, nodules, caseous cavities,

hairy glass density shadow, and tree-bud sign. Diagnostic criteria

for non-active TB cases were as follows: 1) pathogenetically

negative for Mycobacterium tuberculosis; 2) imaging

manifestations include calcified lesions (single or multiple),

cord-like lesions (clear margins), sclerotic lesions, clean

cavities, pleural thickening, adhesions or calcifications, and

other single or multiple manifestations. Patients with complete

and clear chest CT scans images were enrolled in this study, while

others with 1) incomplete clinical records, 2) concurrent

conditions that severely affect the findings of chest CT (e.g.,

lung cancer, pacemaker or defibrillator placement, history of

cardiac or pulmonary surgery) or 3) extensive pleural effusion

were excluded.

According to the above criteria, a complete flow chart of the

data collection was shown in Figure 1. A total of 2,291 patients

were enrolled in this study, including 1,160 patients in the active

pulmonary TB group (age: 54.62 ± 17.21 years; 280 female and

880 male) and 1,131 patients in the non-active pulmonary TB

group (age: 45.12 ± 18.52 years; 362 female and 769 male). The

patients’ demographic characteristics were listed in Table 1,

including age, sex and existing TB related symptoms (chest

pain, cough, sputum, fever, chest tightness, haemoptysis,

wheezing, dyspnoea, fatigue, night sweats, and weight loss).

CT images and clinical information were collected within

1 month before collecting samples for pathogenic

microbiological examinations. Patients and their

corresponding CT images and clinical data were randomly

grouped at a ratio of 7:2:1, serving as training, validation and

testing sets. Following the same criteria, we retrospectively

collected 100 ATB patients and 100 non-ATB patients

admitted to the Shache County Hospital of Kashgar Prefecture

FIGURE 1
Patient inclusion and exclusion diagram.
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TABLE 1 Baseline characteristics of the 2291 patients.

Clinical features Total
(N = 2291)

Non-active pulmonary
tuberculosis (N = 1131)

Active pulmonary
tuberculosis (N = 1160)

p Value

Age 49.92 ± 17.41 45.12 ± 18.52 54.62 ± 17.21 <0.001
Sex

Female 642 (28.02%) 362 (15.80%) 280 (12.22%) 0.079

Male 1649 (71.98%) 769 (33.57%) 880 (38.41%)

Hemoptysis 274 (11.96%) 135 (5.89%) 139 (6.07%) 0.773

Cough 1901 (82.98%) 870 (37.97%) 1031 (45.00%) 0.023

Expectoration 1557 (67.96%) 757 (33.04%) 800 (34.92%) 0.702

Fever 1008 (44.00%) 441 (19.25%) 567 (24.75%) 0.098

Wheezing 274 (11.96%) 169 (7.38%) 105 (4.58%) 0.081

Chest pain 18 (0.79%) 13 (0.57%) 5 (0.22%) 0.01

Chest tightness 206 (8.99%) 113 (4.93%) 93 (4.06%) 0.627

Breathing difficulty 45 (1.96%) 11 (0.48%) 34 (1.48%) 0.474

Fatigue 458 (19.99%) 339 (14.80%) 119 (5.19%) 0.132

Night sweats 229 (10.00%) 101 (4.41%) 128 (5.59%) 0.613

Weight loss 457 (19.95%) 248 (10.82%) 209 (9.12%) 0.51

FIGURE 2
Images for ATB and non-ATB. (A–B) Patient with active pulmonary TB: male, 60-years-old, chest pain and dyspnea for 3 days, multiple central
lobular nodules in the right lower lobe, left upper lobe and left lower lobe, and with cords and surrounding patchy dense shadowing. (C–D) Patient
with non-active pulmonary TB: female, 50-years-old who experienced cough and sputum for 6 days, with multiple patchy shadows observed in the
middle lobe of the right lung and the lower lobes of both lungs, adjacent to the pulmonary nodules and surrounded by tree buds.
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(Kashgar, China) between February and August in 2021 as an

external testing set.

2.2 Computer tomography scan images
collection

CT scans were completed by using a Siemens CT scanner

with a conventional layer thickness of 10 mm, a layer spacing of

10 mm, a thin layer thickness of 2–3 mm, a layer spacing of

2–3 mm, a table feed speed of 5 mm/s, a voltage of 120 kV, and a

current of 180–240 mA. For the procedure, the patient was

placed in the supine position with the arms raised, and the

entire lung was scanned with a layer thickness and layer spacing

of 5 mm each, followed by post-reconstruction with a layer

thickness of 0.625 mm. The images were checked through

both the lung window and the mediastinal window to ensure

the quality of the images (Figure 2).

2.3 Development and comparison of the
pulmonary tuberculosis differential
diagnose models

The overall flowchart of this study was shown in Figure 3.

The whole process was divided into two parts. In the beginning of

the first part, image preprocessing, such as normalization and

contrast enhancement (Supplementary File S1), was finished.

Then, in order to generate masks of the lung so as to eliminate the

unrelated regions before the training of the deep learning model,

we used 3D Nested UNet (Zhou et al., 2018) to extract of the lung

field. To verify the effectiveness of the pretrained lung field

segmentation model, we invited two radiologists with more

than 5 years working experience to conduct a double-blind

review of the segmentation results and to modify them to

obtain the final segmentation results. The network structure

was shown in Figure 4A and the details of 3D Nested UNet

model saw Supplementary File S2.

To complete the classification task and achieve a superior

classification performance, the second part used three different

pre-trained deep learning models, including 3D ResNet-50

(Korolev et al., 2017), 3D VGG-16 (Apostolopoulos and

Mpesiana, 2020) and 3D EfficientNet (Tan and Le, 2019).

These AI models were widely used in the field of target

classification, often as part of the classical neural network of

the computer vision task backbone. The 3DVGG-16, 3D ResNet-

50, and 3D EfficientNet were three dimensions modified version

of the traditional two dimensions-VGG-16 network, two

dimensions-residual Net network and two dimensions-

EfficientNet network. 3D VGG-16, as the name implies, was

consisted of 16 layers, including 13 convolutional layers and

3 fully connected (FC) layers, whose network structures was

shown in Figure 4B. Using skip connections and residual blocks

structure, 3D ResNet-50 model could improve learning efficiency

and alleviate the problem of vanishing gradient caused by deep

neural network. The network structure of 3D ResNet-50 model

FIGURE 3
Overall flowchart of the study.
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was shown in Figure 4C and the corresponding details of the

model was described in Supplementary File S3. As for the third

model, 3D EfficientNet network aimed at improving diagnosis

performance by changing and balancing the depth of the

feature extraction layers and the width of the deep learning

model, and its network structures was shown in Figure 4D.

These trained models utilized the same training, validation,

testing and external testing sets. Training parameters were

described in Supplementary File S4. After model training, we

compared the performance of these three models in the

training, validation, testing and external testing sets. The

accuracy (ACC), the recall (also called the true positive rate

or sensitivity), F1 score and the AUC value were calculated

and used as evaluation indexes for performance comparison

among different models.

2.4 Model interpretation and visualization

To visualize the inference process of the deep learning model,

class activation maps (CAMs) were utilized to display the

suspicious lung regions recognized by the deep learning

model. The multi-image 3D CT scans were fed into the

trained model, and then features from the final convolutional

layer were extracted to generate a weighted activation map for

each image via the 3D gradient-weighted class activation map

(Grad-CAM) technique (Selvaraju et al., 2017) (Details in

Supplementary File S5). CAMs enabled the predicted class

scores to be visualized on any given image, highlighting the

most discriminative and important regions for differential

diagnosis with red and yellow masks to improve the

interpretability of the model.

FIGURE 4
The structure of neural networks. (A) Nested UNet network structure. (B) 3D VGG-16 network structure. (C) 3D ResNet-50 network structure.
(D) 3D EfficientNet network structure.
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2.5 Human-machine diagnosis ability
competition

At last, using the external test data, we supplemented a

human-machine competition experiment to evaluate the total

diagnostic time and accuracy between two radiologists and the

best-performing AI model. We enlisted two radiologists with

5 and 10 years of professional experience who were not involved

in annotating either the training or validation set. The CT scans

reading rules were as follows: each radiologist interpreted the CT

signs and calculated the proportion of patients with certain CT

signs in their respective groups. During the study, each

radiologist gave his own independent diagnosis for each case

included in the external testing set.

2.6 Statistical analysis

SPSS version 22.0 (SPSS Inc) was used to analyse the

differences between the clinical features of the active

pulmonary TB group and the non-active pulmonary TB

group. Continuous variables were expressed as the mean ±

standard deviation, and a two-sided Student’s t test was used

to identify significant differences between the variables in the

different groups. Discrete variables were expressed as counts

(percentages), and Pearson’s chi-square test was used for these

variables. The comparison of predictive performances between

multiple models was performed by the Delong test, and p values

were computed using a one-tailed z-test. McNemar test was used

to compare the differences of the sensitivity and specificity in

ATB diagnosis between the AI model and radiologists. p

values <0.05 were considered significant.

3 Results

3.1 Clinical characteristics of the patients

A total of 2,291 patients from The First People’s Hospital

of Kashi were enrolled in this study, including 1160 patients

with active pulmonary TB and 1,131 patients with non-active

pulmonary TB. The patients’ demographic characteristics

were listed in Table 1, active pulmonary TB patients were

older than non-active pulmonary TB patients (p < 0.001).

Patients with active pulmonary TB had a higher incidence of

cough (p = 0.023), while patients with non-active pulmonary

TB had a higher incidence of chest pain (p = 0.010). Patients

and their corresponding CT images and clinical data were

randomly grouped at a ratio of 7:2:1, serving as training set,

validation set and testing set. In terms of the external testing

cohort, 100 ATB patients and 100 non-ATB patients were

collected in the Shache County Hospital of Kashgar

Prefecture. T
A
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3.2 Deep learning models performance
evaluation

We compared the performance of 3D ResNet-50 with other

deep learning models including 3D VGG-16 and 3D

EfficientNet architectures on the training, validation, testing

and external testing sets. The results were presented in Table 2;

Table 3. The results unveiled that the classification

performance for 3D ResNet-50 was the highest in the

training set, validation set and testing set. 3D ResNet-50

model achieved an AUC of 0.961 and an accuracy of

0.971 in the testing set, outperforming the other two models

(3D ResNet-50 AUC vs. 3D VGG-16 AUC: 0.961 vs. 0.908,

Delong test p = 0.028; 3D ResNet-50 AUC vs. 3D EfficientNet

AUC: 0.961 vs. 0.932, p = 0.017). 3D ResNet-50 also had superior

diagnosis capability over the 3D VGG-16 model and 3D

EfficientNet model in the external validation set (3D ResNet-50

AUC vs. 3D VGG-16 AUC: 0.946 vs. 0.884, Delong test p = 0.012;

3D ResNet-50 AUC vs. 3D EfficientNet AUC: 0.946 vs. 0.924, p =

0.032). The ROC curves of the three models on the training,

validation, testing and external testing sets were depicted in

Figure 5, suggesting that 3D ResNet-50 is the model with best

performance. These results showed that an appropriate increase of

the depth of the neuron network according to the specific task

could improve the classification performance of the deep learning

model and avoid the excessive expansion of the complexity of the

model, which might result in diminishing the capabilities of the

model in identifying active pulmonary tuberculosis cases.

TABLE 3 Comparison of 3 different deep learning models on the training, validation, testing and external testing sets.

Models for comparison PTrainning Set PValidation Set PTesting Set PExternal Testing Set

3D VGG-16 vs. 3D EfficientNet 0.012 0.034 0.046 0.016

3D EfficientNet vs. 3D ResNet-50 0.021 0.045 0.017 0.032

3D VGG-16 vs. 3D ResNet-50 <0.001 0.013 0.028 0.012

FIGURE 5
The ROC curves of the models. ROC curves of 3D VGG-16, 3D EfficientNet and 3D ResNet-50 models on the (A) training, (B) validation, (C)
testing and (D) external testing sets.
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3.3 Model visualization

To visualize the inference process of a deep learning model,

we selected the model with the best performance for feature

visualization using CAMs, masking the most representative

regions of the predicted disease on the CT scan images with

red colour. The Grad-CAM tool was applied to identify and

visualize the regions that the 3D ResNet-50 model considered

important for differential diagnosis. Figure 6A showed the lung

field region CT images and the corresponding CAMs of four

active pulmonary TB patients, and Figure 6B showed the lung

field region CT images and the corresponding CAMs of four

non-active pulmonary TB patients. The high attention and high

activation areas shown by the CAMs are tuberculosis affected

regions with vital information for the ATB/non-ATB

differential diagnosis, indicating that the AI model did not

only provide us with accurate diagnosis but also focused on the

important lung lesion regions when it was reading the CT

images, imitating the behaviour of radiology experts.

Obviously, it would greatly boost the clinicians’ confidence

in the AI diagnosis, which might become a powerful tool in the

bedside.

3.4 The comparison between AI model
and radiologist in active pulmonary
tuberculosis diagnosis

In the external testing set, the total diagnostic time and

accuracy between two radiologists and the best-performing AI

model (3D ResNet-50) were compared. The results are

summarized in Table 4. Classification confusion matrices

reported the number of true-positive, false-positive, true-

negative and false-negative results of the AI model and

radiologists. The 3D ResNet-50 model achieved an ACC of

0.910 in distinguishing active pulmonary TB from non-active

pulmonary TB, reaching higher levels of sensitivity and

sensitivity attained by both human experts, including radiologist

with 10 years of experience (3D ResNet-50 vs. radiologist

sensitivity: 0.894 vs. 0.876, McNemar test p < 0.05; 3D ResNet-

50 vs. radiologist specificity: 0.927 vs. 0.915, McNemar test p <
0.05) and radiologist with 5 years of experience (3D ResNet-50 vs.

radiologist sensitivity: 0.894 vs. 0.863, McNemar test p < 0.05; 3D

ResNet-50 vs. radiologist specificity: 0.927 vs. 0.888, McNemar test

p < 0.05). Additionally, the speed of diagnosis was 10 times faster

than that of the radiologists. In other words, the AI model was

FIGURE 6
Lung CT images and the corresponding CAMs. (A) ATB CT images of the lung field and the corresponding CAMs. (B)Non-ATB CT images of the
lung field and the corresponding CAMs.
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capable of producing experienced radiologist-level diagnosis

rapidly and automatically, which would improve the working

efficiency of the physicians and address the problem of the lack

of experienced radiologists.

4 Discussion

In this study, we established CT scans-based AI models for

the active tuberculosis diagnosis. Among the deep learning

models, the 3D ResNet-50 model outperformed the 3D VGG-

16 model and 3D EfficientNet model, reaching AUC values over

0.94 in multiple cohorts. It was worth mentioning that the

diagnosis speed of the 3D ResNet-50 model was 10 times

faster than that of the radiologists, while the accuracy was

about the same as experienced radiologists. Clinically,

distinguishing patients with non-active pulmonary TB from

patients with active pulmonary TB based solely on CT images

is challenging because CT images of both conditions show

multiple nodules, funicular foci, patchy dense shadows, and

buds. Here, the regions highlighted in the images by the

CAMs could assist radiologists in reading CT scans, which

would maximize the working efficiency of the doctors and

shorten the time required for the differential diagnosis.

Basic clinical data and clinical manifestations of all the

enrolled patients were collected for further investigation.

Patients of active pulmonary tuberculosis were previously

reported to be older (Perez-Guzman et al., 1999; Li et al.,

2017) than those with non-active pulmonary tuberculosis and

more likely to have symptoms such as cough (Alavi et al., 2014)

and chest pain (Kwon et al., 2013; Lee et al., 2021), which was

consistent with the findings of our study. However, there was no

difference in gender between active and non-active pulmonary

tuberculosis patients in this study, which agreed with the findings

of Kim et al. (2014) andWang et al. (2021). Cui et al. (2020) tried

to use radiomics to distinguish pulmonary tuberculosis and lung

cancer with CT images, but it took a long time to delineate the

disease affected regions of interest in advance and the results

were greatly affected by the manual delineation. In contrast, our

approach used 3D Nested UNet to extract the lung field, which

was an accurate and fully automatic segmentation algorithm,

keeping the lung field visual information intact for deep learning.

Ma et al. used manual labelling method as a step for the

segmentation of TB affected regions (Ma et al., 2020), which

was less robust and automatic than models fully depended on

machine learning algorithms. In addition, the Ma et al. adopted a

2D classification network, but our classification network was

based on 3D, which made full use of three-dimensional features

of images. In a word, our deep learning model had significant

advantages over the reported CT image-based TB diagnosis

models, which would find wide clinical application as a

reliable tool for active pulmonary tuberculosis diagnosis.

Our study also had certain limitations. First, our cohort did not

include TB patients with human immunodeficiency virus and

patients with other subtypes of TB, such as drug-resistant

tuberculosis and reactivated tuberculosis. Therefore, the

diagnostic performance of the model for these patients remained

unknown. Second, the model might be less sensitive to small

pulmonary TB lesions. Therefore, physicians still need to check

the CT scans again before coming up with the final diagnosis.

In conclusion, this study demonstrated that 3D ResNet-50 deep

learning model was capable of achieving a diagnosis accuracy

comparable to experienced radiologists and could be used as a

rapid auxiliary diagnostic tool to differentiate active pulmonary

tuberculosis and non-active pulmonary tuberculosis with indicative

areas of the predicted disease visualized in the CT images.
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Nomenclature

Abbreviations

AI artificial intelligence

ATB active pulmonary tuberculosis

AUC area under the receiver operating characteristic curve

CAMs class activation maps

CNN convolutional neural networks

CT computer tomography

non-ATB non-active pulmonary tuberculosis

ROC receiver operating characteristic curve

TB tuberculosis

3D three dimension
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