3,522 research outputs found
Generalized Attractor Points in Gauged Supergravity
The attractor mechanism governs the near-horizon geometry of extremal black
holes in ungauged 4D N=2 supergravity theories and in Calabi-Yau
compactifications of string theory. In this paper, we study a natural
generalization of this mechanism to solutions of arbitrary 4D N=2 gauged
supergravities. We define generalized attractor points as solutions of an
ansatz which reduces the Einstein, gauge field, and scalar equations of motion
to algebraic equations. The simplest generalized attractor geometries are
characterized by non-vanishing constant anholonomy coefficients in an
orthonormal frame. Basic examples include Lifshitz and Schrodinger solutions,
as well as AdS and dS vacua. There is a generalized attractor potential whose
critical points are the attractor points, and its extremization explains the
algebraic nature of the equations governing both supersymmetric and
non-supersymmetric attractors.Comment: 31 pages, LaTeX; v2, references fixed; v3, minor changes, version to
appear in Phys. Rev.
Low energy scattering with a nontrivial pion
An earlier calculation in a generalized linear sigma model showed that the
well-known current algebra formula for low energy pion pion scattering held
even though the massless Nambu Goldstone pion contained a small admixture of a
two-quark two-antiquark field. Here we turn on the pion mass and note that the
current algebra formula no longer holds exactly. We discuss this small
deviation and also study the effects of an SU(3) symmetric quark mass type term
on the masses and mixings of the eight SU(3) multiplets in the model. We
calculate the s wave scattering lengths, including the beyond current algebra
theorem corrections due to the scalar mesons, and observe that the model can
fit the data well. In the process, we uncover the way in which linear sigma
models give controlled corrections (due to the presence of scalar mesons) to
the current algebra scattering formula. Such a feature is commonly thought to
exist only in the non-linear sigma model approach.Comment: 15 pages, 8 figure
Another possible way to determine the Neutrino Mass Hierarchy
We show that by combining high precision measurements of the atmospheric
delta m^2 in both the electron and muon neutrino (or anti-neutrino)
disappearance channels one can determine the neutrino mass hierarchy. The
required precision is a very challenging fraction of one per cent for both
measurements. At even higher precision, sensitivity to the cosine of the CP
violating phase is also possible. This method for determining the mass
hierarchy of the neutrino sector does not depend on matter effects.Comment: 12 pages, 3 postscript figures, late
A Systematic Review of the Debate and the Researchers of Disruptive Innovation
Despite the popularity of the term “disruptive innovation”, its applications have taken on different meanings. Clayton Christensen is a prominent author in the field but his approach has not been applied in a consistent manner. To elucidate the use of the term in business studies, this paper employs a bibliometric approach to provide a descriptive analysis of researchers and their relevant works in the network formed by the related literature, in addition to distinguishing and grouping associated authors. The results suggest a dissimilarity of objectives between two subgroups using the term “disruptive innovation”, and the discussion about Clayton Christensen’s specific meaning of the term seems to make sense to only one of them
Recommended from our members
Increased DNA Copy Number Variation Mosaicism in Elderly Human Brain.
Aging is a complex process strongly determined by genetics. Previous reports have shown that the genome of neuronal cells displays somatic genomic mosaicism including DNA copy number variations (CNVs). CNVs represent a significant source of genetic variation in the human genome and have been implicated in several disorders and complex traits, representing a potential mechanism that contributes to neuronal diversity and the etiology of several neurological diseases and provides new insights into the normal, complex functions of the brain. Nonetheless, the features of somatic CNV mosaicism in nondiseased elderly brains have not been investigated. In the present study, we demonstrate a highly significant increase in the number of CNVs in nondiseased elderly brains compared to the blood. In two neural tissues isolated from paired postmortem samples (same individuals), we found a significant increase in the frequency of deletions in both brain areas, namely, the frontal cortex and cerebellum. Also, deletions were found to be significantly larger when present only in the cerebellum. The sizes of the variants described here were in the 150-760 kb range, and importantly, nearly all of them were present in the Database of Genomic Variants (common variants). Nearly all evidence of genome structural variation in human brains comes from studies detecting changes in single cells which were interpreted as derived from independent, isolated mutational events. The observations based on array-CGH analysis indicate the existence of an extensive clonal mosaicism of CNVs within and between the human brains revealing a different type of variation that had not been previously characterized
- …