13 research outputs found

    Diversity and role of plasmids in adaptation of bacteria inhabiting the Lubin copper mine in Poland, an environment rich in heavy metals

    Get PDF
    Dziewit L, Pyzik A, Szuplewska M, et al. Diversity and role of plasmids in adaptation of bacteria inhabiting the Lubin copper mine in Poland, an environment rich in heavy metals. Frontiers in Microbiology. 2015;6: 152.The Lubin underground mine, is one of three mining divisions in the Lubin-Glogow Copper District in Lower Silesia province (Poland). It is the source of polymetallic ore that is rich in copper, silver and several heavy metals. Black shale is also significantly enriched in fossil organic matter in the form of long-chain hydrocarbons, polycyclic aromatic hydrocarbons, organic acids, esters, thiophenes and metalloporphyrins. Biological analyses have revealed that this environment is inhabited by extremophilic bacteria and fungi. Kupfershiefer black shale and samples of water, bottom and mineral sediments from the underground (below 600m) Lubin mine were taken and 20 bacterial strains were isolated and characterized. All exhibited multi-resistant and hypertolerant phenotypes to heavy metals. We analyzed the plasmidome of these strains in order to evaluate the diversity and role of mobile DNA in adaptation to the harsh conditions of the mine environment. Experimental and bioinformatic analyses of 11 extrachromosomal replicons were performed. Three plasmids, including a broad-host-range replicon containing a Tn3 family transposon, carried genes conferring resistance to arsenic, cadmium, cobalt, mercury and zinc. Functional analysis revealed that the resistance modules exhibit host specificity, i.e., they may increase or decrease tolerance to toxic ions depending on the host strain. The other identified replicons showed diverse features. Among them we identified a catabolic plasmid encoding enzymes involved in the utilization of histidine and vanillate, a putative plasmid-like prophage carrying genes responsible for NAD biosynthesis, and two repABC-type plasmids containing virulence-associated genes. These findings provide an unique molecular insight into the pool of extrachromosomal replicons and highlight their role in the biology and adaptation of extremophilic bacteria inhabiting terrestrial deep subsurface

    Bacteriophages for Controlling <i>Staphylococcus</i> spp. Pathogens on Dairy Cattle Farms: In Vitro Assessment

    No full text
    Pathogenic Staphylococcus spp. strains are significant agents involved in mastitis and in skin and limb infections in dairy cattle. The aim of this study was to assess the antibacterial effectiveness of bacteriophages isolated from dairy cattle housing as potential tools for maintaining environmental homeostasis. The research will contribute to the use of phages as alternatives to antibiotics. The material was 56 samples obtained from dairy cows with signs of limb and hoof injuries. Staphylococcus species were identified by phenotypic, MALDI-TOF MS and PCR methods. Antibiotic resistance was determined by the disc diffusion method. Phages were isolated from cattle housing systems. Phage activity (plaque forming units, PFU/mL) was determined on double-layer agar plates. Morphology was examined using TEM microscopy, and molecular characteristics were determined with PCR. Among 52 strains of Staphylococcus spp., 16 were used as hosts for bacteriophages. Nearly all isolates (94%, 15/16) showed resistance to neomycin, and 87% were resistant to spectinomycin. Cefuroxime and vancomycin were the most effective antibiotics. On the basis of their morphology, bacteriophages were identified as class Caudoviricetes, formerly Caudovirales, families Myoviridae-like (6), and Siphoviridae-like (9). Three bacteriophages of the family Myoviridae-like, with the broadest spectrum of activity, were used for further analysis. This study showed a wide spectrum of activity against the Staphylococcus spp. strains tested. The positive results indicate that bacteriophages can be used to improve the welfare of cattle

    Detection of antibiotic resistance and classical enterotoxin genes in coagulase -negative staphylococci isolated from poultry in Poland

    No full text
    Introduction: The study sought to characterise antimicrobial resistance among coagulase-negative Staphylococcus (CNS) species recovered from broiler chickens and turkeys in Poland including the presence of 12 antimicrobial resistance genes and five classical genes of staphylococcal enterotoxins. Material and Methods: A panel of 11 antimicrobial disks evaluated the phenotypic sensitivity of the tested strains to antibiotics. Five multiplex PCR assays were performed using primer pairs for specific detection of antibiotic resistance genes and staphylococcal enterotoxin A to E genes. Results: Selected antimicrobial agent susceptibility testing revealed 100% of such in in vitro conditions to cefoxitin among strains of Staphylococcus sciuri and S. chromogenes. The blaZ (for ß-lactam) and mecA (for methicillin resistance) genes were in 58.3% and 27.5% of strains, respectively. Among genes resistant to tetracyclines, tetK was most frequent. Fewer (CNS) strains showed genes resistant to macrolides, lincosamides, and florfenicol/chloramphenicol. Multiplex PCR for classical enterotoxins (A-E) detected the see gene in two S. hominis strains, while the seb gene producing enterotoxin B was found in one strain of S. epidermidis. Conclusion: CNS strains of Staphylococcus isolated from poultry were either phenotypically or genotypically multidrug resistant. Testing for the presence of the five classical enterotoxin genes showed that CNS strains, as in the case of S. aureus strains, can be a source of food intoxications

    The end of the age of antibiotics? Alternatives to overcoming bacterial resistance

    No full text
    The „golden age” of antibiotics seems to be coming to an end. The effect of uncontrolled distribution of chemotherapeutic agents in animal production is the commonly growing phenomenon of dramatic drug resistance in bacterial populations. At the end of the 20th century, the repeated failures to effectively control of bacterial infections have initiated the introduction of legislative procedures to limit the use of antibiotics, especially as feed additives in animals. The next step was the developing of alternative for antibiotics to control bacteria, with particular emphasis on natural substances as extracts and oils obtained from plants, which have been used against Gram – positive and Gram – negative bacteria, as well as Candida fungi. These are cationic peptides stabilized by cysteine (defensins and cathelicidins) – identified both in prokaryotes and eukaryotes. Other examples are the nanoparticles, especially silver, gold or platinum. The use of bacteriophages as natural anti-bacterial agents, which bactericidal effect has been demonstrated in numerous experimental therapies in humans and animals, also deserves special emphasis. In this article scientific approaches to novel antibacterial therapies were presented and briefly discussed. As a consequence of the threat of widespread and global growth of multi-resistant bacteria there is a strong need to develop of alternative for antibiotics in elimination of multidrug resistant pathogens

    Determination of anti-phage antibodies in calf sera following application of Escherichia coli and Mannheimia haemolytica-specific bacteriophages

    No full text
    The widespread occurrence of drug-resistant bacteria has increased interest in alternatives to antibiotics for combatting bacterial infections, among which bacteriophages play an important role. The ability of phage proteins to induce an anti-phage immune response can significantly limit the effectiveness of treatment, which was the basis for the study described in this article. The aim of the study was to assess the effects of bacteriophages on the induction of an anti-phage humoral response in calves

    Factors Associated With Longitudinal Psychological and Physiological Stress in Health Care Workers During the COVID-19 Pandemic: Observational Study Using Apple Watch Data

    No full text
    BackgroundThe COVID-19 pandemic has resulted in a high degree of psychological distress among health care workers (HCWs). There is a need to characterize which HCWs are at an increased risk of developing psychological effects from the pandemic. Given the differences in the response of individuals to stress, an analysis of both the perceived and physiological consequences of stressors can provide a comprehensive evaluation of its impact. ObjectiveThis study aimed to determine characteristics associated with longitudinal perceived stress in HCWs and to assess whether changes in heart rate variability (HRV), a marker of autonomic nervous system function, are associated with features protective against longitudinal stress. MethodsHCWs across 7 hospitals in New York City, NY, were prospectively followed in an ongoing observational digital study using the custom Warrior Watch Study app. Participants wore an Apple Watch for the duration of the study to measure HRV throughout the follow-up period. Surveys measuring perceived stress, resilience, emotional support, quality of life, and optimism were collected at baseline and longitudinally. ResultsA total of 361 participants (mean age 36.8, SD 10.1 years; female: n=246, 69.3%) were enrolled. Multivariate analysis found New York City’s COVID-19 case count to be associated with increased longitudinal stress (P=.008). Baseline emotional support, quality of life, and resilience were associated with decreased longitudinal stress (P<.001). A significant reduction in stress during the 4-week period after COVID-19 diagnosis was observed in the highest tertial of emotional support (P=.03) and resilience (P=.006). Participants in the highest tertial of baseline emotional support and resilience had a significantly different circadian pattern of longitudinally collected HRV compared to subjects in the low or medium tertial. ConclusionsHigh resilience, emotional support, and quality of life place HCWs at reduced risk of longitudinal perceived stress and have a distinct physiological stress profile. Our findings support the use of these characteristics to identify HCWs at risk of the psychological and physiological stress effects of the pandemic
    corecore