1,171 research outputs found
Transition from rotating waves to modulated rotating waves on the sphere
We study non-resonant and resonant Hopf bifurcation of a rotating wave in
SO(3)-equivariant reaction-diffusion systems on a sphere. We obtained reduced
differential equations on so(3), the characterization of modulated rotating
waves obtained by Hopf bifurcation of a rotating wave, as well as results
regarding the resonant case. Our main tools are the equivariant center manifold
reduction and the theory of Lie groups and Lie algebras, especially for the
group SO(3) of all rigid rotations on a sphere
Well-posedness of boundary layer equations for time-dependent flow of non-Newtonian fluids
We consider the flow of an upper convected Maxwell fluid in the limit of high
Weissenberg and Reynolds number. In this limit, the no-slip condition cannot be
imposed on the solutions. We derive equations for the resulting boundary layer
and prove the well-posedness of these equations. A transformation to Lagrangian
coordinates is crucial in the argument
General decay of the solution for a viscoelastic wave equation with a time-varying delay term in the internal feedback
In this paper we consider a viscoelastic wave equation with a time-varying
delay term, the coefficient of which is not necessarily positive. By
introducing suitable energy and Lyapunov functionals, under suitable
assumptions, we establish a general energy decay result from which the
exponential and polynomial types of decay are only special cases.Comment: 11 page
Role of inertia in two-dimensional deformation and breakup of a droplet
We investigate by Lattice Boltzmann methods the effect of inertia on the
deformation and break-up of a two-dimensional fluid droplet surrounded by fluid
of equal viscosity (in a confined geometry) whose shear rate is increased very
slowly. We give evidence that in two dimensions inertia is {\em necessary} for
break-up, so that at zero Reynolds number the droplet deforms indefinitely
without breaking. We identify two different routes to breakup via two-lobed and
three-lobed structures respectively, and give evidence for a sharp transition
between these routes as parameters are varied.Comment: 4 pages, 4 figure
On Asymptotic Completeness of Scattering in the Nonlinear Lamb System, II
We establish the asymptotic completeness in the nonlinear Lamb system for
hyperbolic stationary states. For the proof we construct a trajectory of a
reduced equation (which is a nonlinear nonautonomous ODE) converging to a
hyperbolic stationary point using the Inverse Function Theorem in a Banach
space. We give the counterexamples showing nonexistence of such trajectories
for nonhyperbolic stationary points
A model problem for the initial-boundary value formulation of Einstein's field equations
In many numerical implementations of the Cauchy formulation of Einstein's
field equations one encounters artificial boundaries which raises the issue of
specifying boundary conditions. Such conditions have to be chosen carefully. In
particular, they should be compatible with the constraints, yield a well posed
initial-boundary value formulation and incorporate some physically desirable
properties like, for instance, minimizing reflections of gravitational
radiation.
Motivated by the problem in General Relativity, we analyze a model problem,
consisting of a formulation of Maxwell's equations on a spatially compact
region of spacetime with timelike boundaries. The form in which the equations
are written is such that their structure is very similar to the
Einstein-Christoffel symmetric hyperbolic formulations of Einstein's field
equations. For this model problem, we specify a family of Sommerfeld-type
constraint-preserving boundary conditions and show that the resulting
initial-boundary value formulations are well posed. We expect that these
results can be generalized to the Einstein-Christoffel formulations of General
Relativity, at least in the case of linearizations about a stationary
background.Comment: 25 page
Connes distance by examples: Homothetic spectral metric spaces
We study metric properties stemming from the Connes spectral distance on
three types of non compact noncommutative spaces which have received attention
recently from various viewpoints in the physics literature. These are the
noncommutative Moyal plane, a family of harmonic Moyal spectral triples for
which the Dirac operator squares to the harmonic oscillator Hamiltonian and a
family of spectral triples with Dirac operator related to the Landau operator.
We show that these triples are homothetic spectral metric spaces, having an
infinite number of distinct pathwise connected components. The homothetic
factors linking the distances are related to determinants of effective Clifford
metrics. We obtain as a by product new examples of explicit spectral distance
formulas. The results are discussed.Comment: 23 pages. Misprints corrected, references updated, one remark added
at the end of the section 3. To appear in Review in Mathematical Physic
Global-in-time solutions for the isothermal Matovich-Pearson equations
In this paper we study the Matovich-Pearson equations describing the process
of glass fiber drawing. These equations may be viewed as a 1D-reduction of the
incompressible Navier-Stokes equations including free boundary, valid for the
drawing of a long and thin glass fiber. We concentrate on the isothermal case
without surface tension. Then the Matovich-Pearson equations represent a
nonlinearly coupled system of an elliptic equation for the axial velocity and a
hyperbolic transport equation for the fluid cross-sectional area. We first
prove existence of a local solution, and, after constructing appropriate
barrier functions, we deduce that the fluid radius is always strictly positive
and that the local solution remains in the same regularity class. To the best
of our knowledge, this is the first global existence and uniqueness result for
this important system of equations
Coexisting Pulses in a Model for Binary-Mixture Convection
We address the striking coexistence of localized waves (`pulses') of
different lengths which was observed in recent experiments and full numerical
simulations of binary-mixture convection. Using a set of extended
Ginzburg-Landau equations, we show that this multiplicity finds a natural
explanation in terms of the competition of two distinct, physical localization
mechanisms; one arises from dispersion and the other from a concentration mode.
This competition is absent in the standard Ginzburg-Landau equation. It may
also be relevant in other waves coupled to a large-scale field.Comment: 5 pages revtex with 4 postscript figures (everything uuencoded
Surface Gap Soliton Ground States for the Nonlinear Schr\"{o}dinger Equation
We consider the nonlinear Schr\"{o}dinger equation , with and and with periodic in each coordinate direction. This problem
describes the interface of two periodic media, e.g. photonic crystals. We study
the existence of ground state solutions (surface gap soliton ground
states) for . Using a concentration compactness
argument, we provide an abstract criterion for the existence based on ground
state energies of each periodic problem (with and ) as well as a more practical
criterion based on ground states themselves. Examples of interfaces satisfying
these criteria are provided. In 1D it is shown that, surprisingly, the criteria
can be reduced to conditions on the linear Bloch waves of the operators
and .Comment: definition of ground and bound states added, assumption (H2) weakened
(sign changing nonlinearity is now allowed); 33 pages, 4 figure
- …
