We study metric properties stemming from the Connes spectral distance on
three types of non compact noncommutative spaces which have received attention
recently from various viewpoints in the physics literature. These are the
noncommutative Moyal plane, a family of harmonic Moyal spectral triples for
which the Dirac operator squares to the harmonic oscillator Hamiltonian and a
family of spectral triples with Dirac operator related to the Landau operator.
We show that these triples are homothetic spectral metric spaces, having an
infinite number of distinct pathwise connected components. The homothetic
factors linking the distances are related to determinants of effective Clifford
metrics. We obtain as a by product new examples of explicit spectral distance
formulas. The results are discussed.Comment: 23 pages. Misprints corrected, references updated, one remark added
at the end of the section 3. To appear in Review in Mathematical Physic