752 research outputs found

    Prospects for near-infrared characterisation of hot Jupiters with VSI

    Full text link
    In this paper, we study the feasibility of obtaining near-infrared spectra of bright extrasolar planets with the 2nd generation VLTI Spectro-Imager instrument (VSI), which has the required angular resolution to resolve nearby hot Extrasolar Giant Planets (EGPs) from their host stars. Taking into account fundamental noises, we simulate closure phase measurements of several extrasolar systems using four 8-m telescopes at the VLT and a low spectral resolution (R = 100). Synthetic planetary spectra from T. Barman are used as an input. Standard chi2-fitting methods are then used to reconstruct planetary spectra from the simulated data. These simulations show that low-resolution spectra in the H and K bands can be retrieved with a good fidelity for half a dozen targets in a reasonable observing time (about 10 hours, spread over a few nights). Such observations would strongly constrain the planetary temperature and albedo, the energy redistribution mechanisms, as well as the chemical composition of their atmospheres. Systematic errors, not included in our simulations, could be a serious limitation to these performance estimations. The use of integrated optics is however expected to provide the required instrumental stability (around 10^-4 on the closure phase) to enable the first thorough characterisation of extrasolar planetary emission spectra in the near-infrared.Comment: 10 pages, 8 figures, Proc. SPIE conference 7013 "Optical and Infrared Interferometry" (Marseille 2008

    Multiscale non-adiabatic dynamics with radiative decay, case study on the post-ionization fragmentation of rare-gas tetramers

    Get PDF
    In this supplementary material, we recollect, for reader's convenience, the general scheme of suggested multiscale model (Sec. 1), and basic informations about approaches used for pilot study: a detailed description of the interaction model (Sec. 2) and dynamical methods used for the dark dynamics step (Sec. 3) reported previously in two preceding studies [1, 2]. In addition, a detailed description of the treatment of radiative processes is also given (Sec. 4).Comment: supplementary material for parent paper; 9 pages, 1 figure; corrected formulae and misleading notation in Sec.4 (pages 7 and 8

    Hyperon-Nucleon Final State Interaction in Kaon Photoproduction of the Deuteron

    Get PDF
    Final state hyperon-nucleon interaction in strangeness photoproduction of the deuteron is investigated making use of the covariant reaction formalism and the P-matrix approach to the YN system. Remarkably simple analytical expression for the amplitude is obtained. Pronounced effects due to final state interaction are predicted including the manifestation of the 2.13 GeV resonance.Comment: LaTeX, 13 page

    Finite Size Scaling for Low Energy Excitations in Integer Heisenberg Spin Chains

    Full text link
    In this paper we study the finite size scaling for low energy excitations of S=1S=1 and S=2S=2 Heisenberg chains, using the density matrix renormalization group technique. A crossover from 1/L1/L behavior (with LL as the chain length) for medium chain length to 1/L21/L^2 scaling for long chain length is found for excitations in the continuum band as the length of the open chain increases. Topological spin S=1/2S=1/2 excitations are shown to give rise to the two lowest energy states for both open and periodic S=1S=1 chains. In periodic chains these two excitations are ``confined'' next to each other, while for open chains they are two free edge 1/2 spins. The finite size scaling of the two lowest energy excitations of open S=2S=2 chains is determined by coupling the two free edge S=1S=1 spins. The gap and correlation length for S=2S=2 open Heisenberg chains are shown to be 0.082 (in units of the exchange JJ) and 47, respectively.Comment: 4 pages (two column), PS file, to be appear as a PRB Brief Repor

    CuSiO_3 : a quasi - one - dimensional S=1/2 antiferromagnetic chain system

    Full text link
    CuSiO_3, isotypic to the spin - Peierls compound CuGeO_3, was discovered recently as a metastable decomposition product of the silicate mineral dioptase, Cu_6Si_6O_{18}\cdot6H_2O. We investigated the physical properties of CuSiO_3 using susceptibility, magnetization and specific heat measurements on powder samples. The magnetic susceptibility \chi(T) is reproduced very well above T = 8 K by theoretical calculations for an S=1/2 antiferromagnetic Heisenberg linear chain without frustration (\alpha = 0) and a nearest - neighbor exchange coupling constant of J/k_{B} = 21 K, much weaker than in CuGeO_3. Below 8 K the susceptibility exhibits a substantial drop. This feature is identified as a second - order phase transition at T_{0} = 7.9 K by specific heat measurements. The influence of magnetic fields on T_{0} is weak, and ac - magnetization measurements give strong evidence for a spin - flop - phase at \mu_0H_{SF} ~ 3 T. The origin of the magnetic phase transition at T_{0} = 7.9 K is discussed in the context of long - range antiferromagnetic order (AF) versus spin - Peierls(SP)order. Susceptibility and specific heat results support the AF ordered ground state. Additional temperature dependent ^{63,65}Cu nuclear quadrupole resonance experiments have been carried out to probe the Cu^{2+} electronic state and the spin dynamics in CuSiO_3

    Nuclear Magnetic Relaxation in the Haldane-Gap Antiferromagnet Ni(C_2_H_8_N_2_)_2_NO_2_(ClO_4_)

    Full text link
    A new theory is proposed to interpret nuclear spin-lattice relaxation-time (T_1_) measurements on the spin-1 quasi-one-dimensional Heisenberg antiferromagnet Ni(C_2_H_8_N_2_)_2_NO_2_(ClO_4_) (NENP). While Sagi and Affleck pioneeringly discussed this subject in terms of field-theoretical languages, there is no theoretical attempt yet to explicitly simulate the novel observations of 1/T_1_ reported by Fujiwara et al.. By means of modified spin waves, we solve the minimum of 1/T_1_ as a function of an applied field, pending for the past decade.Comment: to be published in J. Phys. Soc. Jpn. 73, No. 4 (2004

    Thermal and magnetic properties of integrable spin-1 and spin-3/2 chains with applications to real compounds

    Full text link
    The ground state and thermodynamic properties of spin-1 and spin-3/2 chains are investigated via exactly solved su(3) and su(4) models with physically motivated chemical potential terms. The analysis involves the Thermodynamic Bethe Ansatz and the High Temperature Expansion (HTE) methods. For the spin-1 chain with large single-ion anisotropy, a gapped phase occurs which is significantly different from the valence-bond-solid Haldane phase. The theoretical curves for the magnetization, susceptibility and specific heat are favourably compared with experimental data for a number of spin-1 chain compounds. For the spin-3/2 chain a degenerate gapped phase exists starting at zero external magnetic field. A middle magnetization plateau can be triggered by the single-ion anisotropy term. Overall, our results lend further weight to the applicability of integrable models to the physics of low-dimensional quantum spin systems. They also highlight the utility of the exact HTE method.Comment: 38 pages, 15 figure
    corecore