33 research outputs found

    Comparative analysis of wild-type accessions reveals novel determinants of Arabidopsis seed longevity

    Get PDF
    Understanding the genetic factors involved in seed longevity is of paramount importance in agricultural and ecological contexts. The polygenic nature of this trait suggests that many of them remain undiscovered. Here, we exploited the contrasting seed longevity found amongst Arabidopsis thaliana accessions to further understand this phenomenon. Concentrations of glutathione were higher in longer-lived than shorter-lived accessions, supporting that redox poise plays a prominent role in seed longevity. However, high seed permeability, normally associated with shorter longevity, is also present in long-lived accessions. Dry seed transcriptome analysis indicated that the contribution to longevity of stored messenger RNA (mRNAs) is complex, including mainly accession-specific mechanisms. The detrimental effect on longevity caused by other factors may be counterbalanced by higher levels of specific mRNAs stored in dry seeds, for instance those of heat-shock proteins. Indeed, loss-of-function mutant analysis demonstrated that heat-shock factors HSF1A and 1B contributed to longevity. Furthermore, mutants of the stress-granule zinc-finger protein TZF9 or the spliceosome subunits MOS4 or MAC3A/MAC3B, extended seed longevity, positioning RNA as a novel player in the regulation of seed viability. mRNAs of proteins with putative relevance to longevity were also abundant in shorter-lived accessions, reinforcing the idea that resistance to ageing is determined by multiple factors.Peer reviewe

    Identification of novel seed longevity genes related to oxidative stress and seed coat by genome wide association studies and reverse genetics

    Full text link
    [EN] Seed longevity is a polygenic trait of relevance for agriculture and for understanding the effect of environment on the ageing of biological systems. In order to identify novel longevity genes, we have phenotyped the natural variation of 270 ecotypes of the model plant,Arabidopsis thaliana, for natural ageing and for three accelerated ageing methods. Genome-wide analysis, using publicly available single-nucleotide polymorphisms (SNPs) data sets, identified multiple genomic regions associated with variation in seed longevity. Reverse genetics of 20 candidate genes in Columbia ecotype resulted in seven genes positive for seed longevity (PSAD1,SSLEA,SSTPR,DHAR1,CYP86A8,MYB47andSPCH) and five negative ones (RBOHD,RBOHE,RBOHF,KNAT7andSEP3). In this uniform genetic background, natural and accelerated ageing methods provided similar results for seed-longevity in knock-out mutants. The NADPH oxidases (RBOHs), the dehydroascorbate reductase (DHAR1) and the photosystem I subunit (PSAD1) highlight the important role of oxidative stress on seed ageing. The cytochrome P-450 hydroxylase, CYP86A8, and the transcription factors, MYB47, KNAT7 and SEP3, support the protecting role of the seed coat during seed ageing.Ministerio de Ciencia, Innovacion y Universidades, Grant/Award Number: BIO2017-88898-PRenard, J.; Niñoles Rodenes, R.; Martínez-Almonacid, I.; Gayubas, B.; Mateos-Fernández, R.; Bissoli, G.; Bueso Rodenas, E.... (2020). Identification of novel seed longevity genes related to oxidative stress and seed coat by genome wide association studies and reverse genetics. Plant Cell & Environment. 43(10):2523-2539. https://doi.org/10.1111/pce.13822S25232539431

    PRX2 and PRX25, peroxidases regulated by COG1, are involved in seed longevity in Arabidopsis

    Full text link
    [EN] Permeability is a crucial trait that affects seed longevity and is regulated by different polymers including proanthocyanidins, suberin, cutin and lignin located in the seed coat. By testing mutants in suberin transport and biosynthesis, we demonstrate the importance of this biopolymer to cope with seed deterioration. Transcriptomic analysis of cog1-2D, a gain-of-function mutant with increased seed longevity, revealed the upregulation of several peroxidase genes. Reverse genetics analysing seed longevity uncovered redundancy within the seed coat peroxidase gene family; however, after controlled deterioration treatment, seeds from the prx2 prx25 double and prx2 prx25 prx71 triple mutant plants presented lower germination than wild-type plants. Transmission electron microscopy analysis of the seed coat of these mutants showed a thinner palisade layer, but no changes were observed in proanthocyanidin accumulation or in the cuticle layer. Spectrophotometric quantification of acetyl bromide-soluble lignin components indicated changes in the amount of total polyphenolics derived from suberin and/or lignin in the mutant seeds. Finally, the increased seed coat permeability to tetrazolium salts observed in the prx2 prx25 and prx2 prx25 prx71 mutant lines suggested that the lower permeability of the seed coats caused by altered polyphenolics is likely to be the main reason explaining their reduced seed longevityRenard, J.; Martínez-Almonacid, I.; Sonntag, A.; Molina, I.; Moya-Cuevas, J.; Bissoli, G.; Muñoz-Bertomeu, J.... (2020). PRX2 and PRX25, peroxidases regulated by COG1, are involved in seed longevity in Arabidopsis. Plant Cell & Environment. 43(2):315-326. https://doi.org/10.1111/pce.13656S315326432Almagro, L., Gómez Ros, L. V., Belchi-Navarro, S., Bru, R., Ros Barceló, A., & Pedreño, M. A. (2008). Class III peroxidases in plant defence reactions. Journal of Experimental Botany, 60(2), 377-390. doi:10.1093/jxb/ern277Bailly, C., El-Maarouf-Bouteau, H., & Corbineau, F. (2008). From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology. Comptes Rendus Biologies, 331(10), 806-814. doi:10.1016/j.crvi.2008.07.022Beisson, F., Li, Y., Bonaventure, G., Pollard, M., & Ohlrogge, J. B. (2007). The Acyltransferase GPAT5 Is Required for the Synthesis of Suberin in Seed Coat and Root of Arabidopsis. The Plant Cell, 19(1), 351-368. doi:10.1105/tpc.106.048033Belmonte, M. F., Kirkbride, R. C., Stone, S. L., Pelletier, J. M., Bui, A. Q., Yeung, E. C., … Harada, J. J. (2013). Comprehensive developmental profiles of gene activity in regions and subregions of the Arabidopsis seed. Proceedings of the National Academy of Sciences, 110(5), E435-E444. doi:10.1073/pnas.1222061110Bernards, M. A. (2002). Demystifying suberin. Canadian Journal of Botany, 80(3), 227-240. doi:10.1139/b02-017Bernards, M. A., Summerhurst, D. K., & Razem, F. A. (2004). Oxidases, peroxidases and hydrogen peroxide: The suberin connection. Phytochemistry Reviews, 3(1-2), 113-126. doi:10.1023/b:phyt.0000047810.10706.46Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114-2120. doi:10.1093/bioinformatics/btu170Bueso, E., Muñoz-Bertomeu, J., Campos, F., Brunaud, V., Martínez, L., Sayas, E., … Serrano, R. (2013). ARABIDOPSIS THALIANA HOMEOBOX25 Uncovers a Role for Gibberellins in Seed Longevity. Plant Physiology, 164(2), 999-1010. doi:10.1104/pp.113.232223Châtelain, E., Satour, P., Laugier, E., Ly Vu, B., Payet, N., Rey, P., & Montrichard, F. (2013). Evidence for participation of the methionine sulfoxide reductase repair system in plant seed longevity. Proceedings of the National Academy of Sciences, 110(9), 3633-3638. doi:10.1073/pnas.1220589110Clerkx, E. J. M., Blankestijn-De Vries, H., Ruys, G. J., Groot, S. P. C., & Koornneef, M. (2004). Genetic differences in seed longevity of various Arabidopsis mutants. Physiologia Plantarum, 121(3), 448-461. doi:10.1111/j.0031-9317.2004.00339.xCosio, C., & Dunand, C. (2009). Specific functions of individual class III peroxidase genes. Journal of Experimental Botany, 60(2), 391-408. doi:10.1093/jxb/ern318Czechowski, T., Stitt, M., Altmann, T., Udvardi, M. K., & Scheible, W.-R. (2005). Genome-Wide Identification and Testing of Superior Reference Genes for Transcript Normalization in Arabidopsis. Plant Physiology, 139(1), 5-17. doi:10.1104/pp.105.063743Debeaujon, I., Léon-Kloosterziel, K. M., & Koornneef, M. (2000). Influence of the Testa on Seed Dormancy, Germination, and Longevity in Arabidopsis. Plant Physiology, 122(2), 403-414. doi:10.1104/pp.122.2.403Duroux, L., & Welinder, K. G. (2003). The Peroxidase Gene Family in Plants: A Phylogenetic Overview. Journal of Molecular Evolution, 57(4), 397-407. doi:10.1007/s00239-003-2489-3Fedi, F., O’Neill, C. M., Menard, G., Trick, M., Dechirico, S., Corbineau, F., … Penfield, S. (2017). Awake1, an ABC-Type Transporter, Reveals an Essential Role for Suberin in the Control of Seed Dormancy. Plant Physiology, 174(1), 276-283. doi:10.1104/pp.16.01556Francoz, E., Ranocha, P., Nguyen-Kim, H., Jamet, E., Burlat, V., & Dunand, C. (2015). Roles of cell wall peroxidases in plant development. Phytochemistry, 112, 15-21. doi:10.1016/j.phytochem.2014.07.020Franke, R., Briesen, I., Wojciechowski, T., Faust, A., Yephremov, A., Nawrath, C., & Schreiber, L. (2005). Apoplastic polyesters in Arabidopsis surface tissues – A typical suberin and a particular cutin. Phytochemistry, 66(22), 2643-2658. doi:10.1016/j.phytochem.2005.09.027Franke, R., & Schreiber, L. (2007). Suberin — a biopolyester forming apoplastic plant interfaces. Current Opinion in Plant Biology, 10(3), 252-259. doi:10.1016/j.pbi.2007.04.004GoffL TrapnellC&KelleyD(2014)CummeRbund: Analysis exploration manipulation and visualization of Cufflinks high‐throughput sequencing data. R package version 2.22.0.Gou, M., Hou, G., Yang, H., Zhang, X., Cai, Y., Kai, G., & Liu, C.-J. (2016). The MYB107 Transcription Factor Positively Regulates Suberin Biosynthesis. Plant Physiology, 173(2), 1045-1058. doi:10.1104/pp.16.01614Graça, J. (2015). Suberin: the biopolyester at the frontier of plants. Frontiers in Chemistry, 3. doi:10.3389/fchem.2015.00062Haughn, G., & Chaudhury, A. (2005). Genetic analysis of seed coat development in Arabidopsis. Trends in Plant Science, 10(10), 472-477. doi:10.1016/j.tplants.2005.08.005Herrero, J., Fernández-Pérez, F., Yebra, T., Novo-Uzal, E., Pomar, F., Pedreño, M. Á., … Zapata, J. M. (2013). Bioinformatic and functional characterization of the basic peroxidase 72 from Arabidopsis thaliana involved in lignin biosynthesis. Planta, 237(6), 1599-1612. doi:10.1007/s00425-013-1865-5Kim, D., Langmead, B., & Salzberg, S. L. (2015). HISAT: a fast spliced aligner with low memory requirements. Nature Methods, 12(4), 357-360. doi:10.1038/nmeth.3317Kosma, D. K., Murmu, J., Razeq, F. M., Santos, P., Bourgault, R., Molina, I., & Rowland, O. (2014). At MYB 41 activates ectopic suberin synthesis and assembly in multiple plant species and cell types. The Plant Journal, 80(2), 216-229. doi:10.1111/tpj.12624Kunieda, T., Shimada, T., Kondo, M., Nishimura, M., Nishitani, K., & Hara-Nishimura, I. (2013). Spatiotemporal Secretion of PEROXIDASE36 Is Required for Seed Coat Mucilage Extrusion in Arabidopsis  . The Plant Cell, 25(4), 1355-1367. doi:10.1105/tpc.113.110072Lee, Y., Rubio, M. C., Alassimone, J., & Geldner, N. (2013). A Mechanism for Localized Lignin Deposition in the Endodermis. Cell, 153(2), 402-412. doi:10.1016/j.cell.2013.02.045Liang, M., Davis, E., Gardner, D., Cai, X., & Wu, Y. (2006). Involvement of AtLAC15 in lignin synthesis in seeds and in root elongation of Arabidopsis. Planta, 224(5), 1185-1196. doi:10.1007/s00425-006-0300-6Li-Beisson, Y., Shorrosh, B., Beisson, F., Andersson, M. X., Arondel, V., Bates, P. D., … Ohlrogge, J. (2013). Acyl-Lipid Metabolism. The Arabidopsis Book, 11, e0161. doi:10.1199/tab.0161Mandel, T., Candela, H., Landau, U., Asis, L., Zilinger, E., Carles, C. C., & Williams, L. E. (2016). Differential regulation of meristem size, morphology and organization by the ERECTA, CLAVATA and class III HD-ZIP pathways. Development. doi:10.1242/dev.129973Milne, I., Stephen, G., Bayer, M., Cock, P. J. A., Pritchard, L., Cardle, L., … Marshall, D. (2012). Using Tablet for visual exploration of second-generation sequencing data. Briefings in Bioinformatics, 14(2), 193-202. doi:10.1093/bib/bbs012Molina, I., Bonaventure, G., Ohlrogge, J., & Pollard, M. (2006). The lipid polyester composition of Arabidopsis thaliana and Brassica napus seeds. Phytochemistry, 67(23), 2597-2610. doi:10.1016/j.phytochem.2006.09.011Molina, I., Ohlrogge, J. B., & Pollard, M. (2007). Deposition and localization of lipid polyester in developing seeds of Brassica napus and Arabidopsis thaliana. The Plant Journal, 53(3), 437-449. doi:10.1111/j.1365-313x.2007.03348.xMoreira‐Vilar F C. Siqueira‐Soares R deC Finger‐Teixeira A. Oliveira de D. M. Ferro AP Rocha daG J. Ferrarese M deLL Santos dosW. D. Ferrarese‐Filho O(2014).The Acetyl Bromide Method Is Faster Simpler and Presents Best Recovery of Lignin in Different Herbaceous Tissues than Klason and Thioglycolic Acid Methods. PLoS ONE 9:e110000.https://doi.org/10.1371/journal.pone.0110000Oñate-Sánchez, L., & Vicente-Carbajosa, J. (2008). DNA-free RNA isolation protocols for Arabidopsis thaliana, including seeds and siliques. BMC Research Notes, 1(1), 93. doi:10.1186/1756-0500-1-93Østergaard, L., Teilum, K., Mirza, O., Mattsson, O., Petersen, M., Welinder, K. G., … Henriksen, A. (2000). Plant Molecular Biology, 44(2), 231-243. doi:10.1023/a:1006442618860Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29(9), 45e-45. doi:10.1093/nar/29.9.e45Passardi, F., Longet, D., Penel, C., & Dunand, C. (2004). The class III peroxidase multigenic family in rice and its evolution in land plants☆☆☆. Phytochemistry, 65(13), 1879-1893. doi:10.1016/j.phytochem.2004.06.023Pedreira, J., Herrera, M. T., Zarra, I., & Revilla, G. (2010). The overexpression of AtPrx37, an apoplastic peroxidase, reduces growth in Arabidopsis. Physiologia Plantarum, 141(2), 177-187. doi:10.1111/j.1399-3054.2010.01427.xPollard, M., Beisson, F., Li, Y., & Ohlrogge, J. B. (2008). Building lipid barriers: biosynthesis of cutin and suberin. Trends in Plant Science, 13(5), 236-246. doi:10.1016/j.tplants.2008.03.003Quiroga, M., Guerrero, C., Botella, M. A., Barceló, A., Amaya, I., Medina, M. I., … Valpuesta, V. (2000). A Tomato Peroxidase Involved in the Synthesis of Lignin and Suberin. Plant Physiology, 122(4), 1119-1128. doi:10.1104/pp.122.4.1119Rains, M. K., Gardiyehewa de Silva, N. D., & Molina, I. (2017). Reconstructing the suberin pathway in poplar by chemical and transcriptomic analysis of bark tissues. Tree Physiology, 38(3), 340-361. doi:10.1093/treephys/tpx060Russell, W. R., Burkitt, M. J., Scobbie, L., & Chesson, A. (2005). EPR Investigation into the Effects of Substrate Structure on Peroxidase-Catalyzed Phenylpropanoid Oxidation. Biomacromolecules, 7(1), 268-273. doi:10.1021/bm050636oSano, N., Rajjou, L., North, H. M., Debeaujon, I., Marion-Poll, A., & Seo, M. (2015). Staying Alive: Molecular Aspects of Seed Longevity. Plant and Cell Physiology, 57(4), 660-674. doi:10.1093/pcp/pcv186Shigeto, J., Itoh, Y., Hirao, S., Ohira, K., Fujita, K., & Tsutsumi, Y. (2015). Simultaneously disrupting AtPrx2 , AtPrx25 and AtPrx71 alters lignin content and structure in Arabidopsis stem. Journal of Integrative Plant Biology, 57(4), 349-356. doi:10.1111/jipb.12334Shigeto, J., Kiyonaga, Y., Fujita, K., Kondo, R., & Tsutsumi, Y. (2013). Putative Cationic Cell-Wall-Bound Peroxidase Homologues in Arabidopsis, AtPrx2, AtPrx25, and AtPrx71, Are Involved in Lignification. Journal of Agricultural and Food Chemistry, 61(16), 3781-3788. doi:10.1021/jf400426gSoliday, C. L., Dean, B. B., & Kolattukudy, P. E. (1978). Suberization: Inhibition by Washing and Stimulation by Abscisic Acid in Potato Disks and Tissue Culture. Plant Physiology, 61(2), 170-174. doi:10.1104/pp.61.2.170Tobimatsu, Y., Chen, F., Nakashima, J., Escamilla-Trevino, L. L., Jackson, L., Dixon, R. A., & Ralph, J. (2013). Coexistence but Independent Biosynthesis of Catechyl and Guaiacyl/Syringyl Lignin Polymers in Seed Coats. The Plant Cell, 25(7), 2587-2600. doi:10.1105/tpc.113.113142Trapnell, C., Hendrickson, D. G., Sauvageau, M., Goff, L., Rinn, J. L., & Pachter, L. (2012). Differential analysis of gene regulation at transcript resolution with RNA-seq. Nature Biotechnology, 31(1), 46-53. doi:10.1038/nbt.2450Vishwanath, S. J., Delude, C., Domergue, F., & Rowland, O. (2014). Suberin: biosynthesis, regulation, and polymer assembly of a protective extracellular barrier. Plant Cell Reports, 34(4), 573-586. doi:10.1007/s00299-014-1727-zVishwanath, S. J., Kosma, D. K., Pulsifer, I. P., Scandola, S., Pascal, S., Joubès, J., … Domergue, F. (2013). Suberin-Associated Fatty Alcohols in Arabidopsis: Distributions in Roots and Contributions to Seed Coat Barrier Properties  . Plant Physiology, 163(3), 1118-1132. doi:10.1104/pp.113.224410Vogt, T. (2010). Phenylpropanoid Biosynthesis. Molecular Plant, 3(1), 2-20. doi:10.1093/mp/ssp106Wang, G.-L., Que, F., Xu, Z.-S., Wang, F., & Xiong, A.-S. (2016). Exogenous gibberellin enhances secondary xylem development and lignification in carrot taproot. Protoplasma, 254(2), 839-848. doi:10.1007/s00709-016-0995-6Yadav, V., Molina, I., Ranathunge, K., Castillo, I. Q., Rothstein, S. J., & Reed, J. W. (2014). ABCG Transporters Are Required for Suberin and Pollen Wall Extracellular Barriers in Arabidopsis    . The Plant Cell, 26(9), 3569-3588. doi:10.1105/tpc.114.129049Zieslin, N., & Ben-Zaken, R. (1992). Effects of applied auxin, gibberellin and cytokinin on the activity of peroxidases in the peduncles of rose flowers. Plant Growth Regulation, 11(1), 53-57. doi:10.1007/bf0002443

    Identification of genes related to seed longevity in Arabidopsis thaliana using genomic molecular techniques

    Full text link
    Tesis por compendio[ES] La longevidad de las semillas, o el tiempo durante el cual permanecen las semillas viables, es de gran importancia para la conservación de la biodiversidad, la agricultura y la economía. Además, el estudio de este parámetro puede contribuir a conocer mejor los mecanismos moleculares comunes a todos los organismos para prevenir el envejecimiento. Una de las principales estrategias de las semillas para ralentizar su envejecimiento consiste en detener su metabolismo, a través de su deshidratación. Otros mecanismos moleculares para evitar daños son el aislamiento frente al entorno a través de la cubierta de la semilla, y la producción de antioxidantes y otras moléculas para evitar el daño oxidativo, uno de los principales causantes del envejecimiento de las semillas. Los mecanismos de reparación mitigan parte del daño acumulado. El organismo modelo de plantas Arabidopsis thaliana brinda la oportunidad de la realización de estudios genómicos para el estudio de, en este caso, la longevidad de las semillas para descubrir nuevos factores genéticos y mecanismos moleculares determinantes. Este conocimiento servirá para entender mejor los procesos de deterioro de las semillas y que también será clave para aumentar la longevidad de estas. Mediante el uso de variedades naturales genotipadas de Arabidopsis thaliana y un estudio de asociación del genoma conocido como GWAS, seguido de estudios de genética reversa, se han identificado 12 nuevos genes relacionados con la longevidad de las semillas, relacionados con la protección del embrión, el control del daño oxidativo, y la permeabilidad de la cubierta de la semilla. El desarrollo de la cubierta de la semilla está determinado por factores de transcripción. Plantas mutantes en diversos factores de transcripción involucrados en el desarrollo de la cubierta de la semilla presentan una longevidad alterada. La sobreexpresión de los factores de transcripción AtHB25 y COG1 provoca que las semillas presenten una mayor longevidad debido a una incrementada deposición de poliésteres lipídicos. Estas barreras de poliésteres lipídicos son la cutícula, formada por cutina, y la suberina. Ambas participan positivamente en la protección del embrión frente al ambiente exterior. Estudios genómicos de ambos factores de transcripción han demostrado que AtHB25 regula directamente a enzimas biosintéticos de los monómeros de suberina y cutina, y COG1 regula la expresión de enzimas relacionados con la polimerización de poliésteres lipídicos y lignina. La regulación en la que participa AtHB25 es muy importante debido a la alta conservación de las secuencias genómicas y funciones de AtHB25 en angiospermas, y parece involucrado en la respuesta a bajas temperaturas. Por otra parte, COG1, que está involucrado en la percepción de luz, regula parte del desarrollo del tegumento externo a través de la regulación de AP2, un factor clave en el establecimiento de la identidad de tejido de este tegumento de la cubierta de la semilla, donde se localiza la suberina. AtHB25 y COG1 están involucrados en la adaptación de la longevidad de la semilla a través de señales ambientales como la temperatura y la luz, respectivamente, regulando la deposición de poliésteres lipídicos.[CAT] La longevitat de les llavors, o el temps que romanen les llavors viables, es de gran importància per la conservació de la biodiversitat, l'agricultura i l'economia. A més a més, l'estudi d'aquest paràmetre pot contribuir a conèixer millor els mecanismes moleculars comuns a tots els organismes per prevenir l'envelliment. Una de les principals estratègies de les llavor per retardar el seu envelliment consisteix detenir el seu metabolisme, mitjançant la seua deshidratació. Altres mecanismes moleculars per evitar danys son el seu aïllament de l'entorn per mitjan de la coberta de la llavor, i la producció d'antioxidants i altres molècules per evitar el dany oxidatiu, un dels principal causants del envelliment de les llavors. Els mecanismes de reparació mitiguen part del dany acumulat. L'organisme model Arabidopsis thaliana brinda la oportunitat de la realització d'estudis genòmics per a l'estudi de, en aquest cas, la longevitat de les llavors per descobrir nous factors genètics y mecanismes moleculars determinants. Aquest coneixement servirà per entendre millor els processos de deteriorament de les llavor i serà clau per augmentar la longevitat d'aquestes. Mitjançant l'ús de varietats naturals genotipades d'Arabidopsis thaliana i un estudi d'associació del genoma conegut com GWAS, seguits d'estudis de genètica inversa, s'han identificat 12 nous gens relacionats amb la longevitat de les llavors, relacionats amb la protecció de l'embrió, el control del dany oxidatiu, y la permeabilitat de la coberta de la llavor. El desenvolupament de la coberta de la llavor està determinada per factors de transcripció. Plantes mutants a diversos factors de transcripció involucrats al desenvolupament de la coberta de les llavors presenten una longevitat alterada. La sobreexpressió dels factors de transcripció AtHB25 i COG1 provoca que les llavors presenten una major longevitat degut a una deposició de polièsters lipídics incrementada. Aquestes barreres de polièsters lipídics son la cutícula, formada per cutina, i la suberina. Ambdues participen positivament la protecció de l'embrió enfront de l'entorn exterior. Estudis genòmics d'ambdós factors de transcripció han demostrat que AtHB25 directament regula a enzims biosintètics dels monòmers de suberina i cutina i COG1 regula enzims relacionats amb la polimerització de polièsters lipídics i lignines. La regulació en la que participa AtHB25 es molt important degut a l'alta conservació de les seqüències genòmiques i funcions de AtHB25 en angiospermes, i parteix estar involucrat en la resposta a baixes temperatures. Per altra banda, COG1, que està involucrat en la percepció de la llum, regula part del desenvolupament del integument extern mitjançant la regulació de AP2, un factor clau en l'establiment de la identitat de teixit de aquest integument de la coberta de la llavor, on es localitza la suberina. AtHB25 i COG1 estan involucrats en l'adaptació de la longevitat de la llavor per mitjan de senyals ambientals com la temperatura i la llum, respectivament, regulant la deposició de polièsters lipídics.[EN] Seed longevity, or period that seeds remain viable, is important for biodiversity conservation, agriculture and economy. In addition, the study of this parameter could ease the knowledge about molecular mechanisms common to all organisms to prevent aging. One of the main strategies of seeds to reduce their aging consists to stop their metabolism, through drying. Other molecular mechanisms to avoid damages are the isolation from the environment with the seed coat, and the production of antioxidants and other molecules to avoid oxidative damage, one of the main seed aging causes. Repair mechanisms relieve part of the accumulated damage. The model plant Arabidopsis thaliana provides the opportunity to carry out genomic studies for the research of, in this case, seed longevity to discover determinant genetic factors and molecular mechanisms. This will serve to better understand seed deterioration processes and it will be key to increase seed longevity. Using natural genotyped varieties of Arabidopsis thaliana and a genome-wide association study (GWAS) followed by reverse genetic studies, 12 new genes related to seed longevity have been identified. They are related to embryo protection, oxidative damage control, and seed coat permeability. Seed coat development is determined by transcription factors. Mutant plants in some transcription factors involved in the seed coat development present altered seed longevity. The over-expression of the transcription factors AtHB25 and COG1 resulted in seeds with increased longevity due to an increased lipid polyester deposition. These lipid polyesters barriers are the cuticle, formed by cutin, and the suberin layer. Both participate positively in the embryo protection from the external environment. Genomic studies of both transcription factors have revealed that AtHB25 directly regulates biosynthetic enzymes of suberin and cutin monomers, and COG1 regulates the expression of enzymes related to the polymerization of lipid polyesters and lignin. The regulation involving AtHB25 is crucial due to the high conservation of genomic sequences and functions of AtHB25 in angiosperms, and it seems to be involved in the response to low temperatures. On the other hand, COG1, which is involved in light perception, regulates part of the development of the external integument through its regulation by AP2, a key factor in establishing the tissue identity of this seed coat integument, where suberin is located. AtHB25 and COG1 are involved in seed longevity adaptation through environmental signals such as temperature and light, respectively, regulating lipid polyesters deposition.Agradezco a las instituciones públicas la inversión en investigación. Gracias a ella, los laboratorios, el personal y los distintos equipos se han podido financiar. Gaetano fue quien me ayudó enormemente conseguir la beca FPI del Ministerio de Economía y Competitividad BES-2015-072096, asociada al proyecto de investigación nacional BIO2014-52621-R-ARRenard Meseguer, J. (2021). Identification of genes related to seed longevity in Arabidopsis thaliana using genomic molecular techniques [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/170554TESISCompendi

    Anther development in Arabidopsis thaliana involves symplastic isolation and apoplastic gating of the tapetum-middle layer interface

    Full text link
    [EN] During flowering plant reproduction, anthers produce pollen grains, the development of which is supported by the tapetum, a nourishing maternal tissue that also contributes non-cell-autonomously to the pollen wall, the resistant external layer on the pollen surface. How the anther restricts movement of the tapetum-derived pollen wall components, while allowing metabolites such as sugars and amino acids to reach the developing pollen, remains unknown. Here, we show experimentally that in arabidopsis thaliana the tapetum and developing pollen are symplastically isolated from each other, and from other sporophytic tissues, from meiosis onwards. We show that the peritapetal strip, an apoplastic structure, separates the tapetum and the pollen grains from other anther cell layers and can prevent the apoplastic diffusion of fluorescent proteins, again from meiosis onwards. The formation and selective barrier functions of the peritapetal strip require two NADPH oxidases, RBOHE and RBOHC, which play a key role in pollen formation. Our results suggest that, together with symplastic isolation, gating of the apoplast around the tapetum may help generate metabolically distinct anther compartments.The study was financed by joint funding (project Mind the Gap) from the French Agence Nationale de la Recherche (ANR-17-CE20-0027 to G.I., supporting J.T.) and the Schweizerischer Nationalfonds zur Forderung der WissenschaftlichenForschung (NSF) (NG). T.G.A. thanks the Sofja Kovalevskaja programme by theAlexander von Humboldt-Stiftung as well as the Max Planck Society for funding.J.R. thanks the Ministerio de Ciencia, Innovacion y Universidades and the EuropeanCommission NextGenerationEU for funding.Truskina, J.; Boeuf S.; Renard, J.; Andersen T.; Geldner, N.; G Ingram (2022). Anther development in Arabidopsis thaliana involves symplastic isolation and apoplastic gating of the tapetum-middle layer interface. Development. 149(22):1-11. https://doi.org/10.1242/dev.2005961111492

    Anther development in Arabidopsis thaliana involves symplastic isolation and apoplastic gating of the tapetum-middle layer interface.

    No full text
    International audienceDuring flowering plant reproduction, anthers produce pollen grains, the development of which is supported by the tapetum, a nourishing maternal tissue that also contributes non-cell autonomously to the pollen wall, the resistant external layer on the pollen surface. How the anther restricts movement of the tapetum derived pollen wall components, whilst allowing metabolites such as sugars and amino acids to reach the developing pollen, remains enigmatic. Here we experimentally show that in Arabidopsis thaliana, the tapetum and developing pollen are symplastically isolated from each other, and from other sporophytic tissues, from meiosis onwards. We show that the peritapetal strip (PTS), an apoplastic structure, separates the tapetum and the pollen grains from other anther cell layers and can prevent the apoplastic diffusion of fluorescent proteins, again from meiosis onwards. The formation and selective barrier functions of the PTS require two NADPH oxidases, RBOHE and RBOHC, which play a key role in pollen formation. Together our results suggest that, together with symplastic isolation, gating of the apoplast around the tapetum may help generate metabolically distinct anther compartments

    Endosperm Persistence in Arabidopsis Results in Seed Coat Fractures and Loss of Seed Longevity

    No full text
    Seeds are specialized plant organs that carry, nurture, and protect plant offspring. Developmental coordination between the three genetically distinct seed tissues (the embryo, endosperm, and seed coat) is crucial for seed viability. In this study, we explore the relationship between the TFs AtHB25 and ICE1. Previous results identified ICE1 as a target gene of AtHB25. In seeds, a lack of ICE1 (ice1-2) suppresses the enhanced seed longevity and impermeability of the overexpressing mutant athb25-1D, but surprisingly, seed coat lipid polyester deposition is not affected, as shown by the double-mutant athb25-1D ice1-2 seeds. zou-4, another mutant lacking the transcriptional program for proper endosperm maturation and for which the endosperm persists, also presents a high sensitivity to seed aging. Analysis of gso1, gso2, and tws1-4 mutants revealed that a loss of embryo cuticle integrity does not underlie the seed-aging sensitivity of ice1-2 and zou-4. However, scanning electron microscopy revealed the presence of multiple fractures in the seed coats of the ice1 and zou mutants. Thus, this study highlights the importance of both seed coat composition and integrity in ensuring longevity and demonstrates that these parameters depend on multiple factors

    Transcription Factor DOF4.1 Regulates Seed Longevity in Arabidopsis via Seed Permeability and Modulation of Seed Storage Protein Accumulation

    Full text link
    [EN] Seed longevity is modulated by multiple genetic factors in Arabidopsis thaliana. A previous genome-wide association study using the Elevated Partial Pressure of Oxygen (EPPO) aging assay pinpointed a genetic locus associated with this trait. Reverse genetics identified the transcription factor DOF4.1 as a novel seed longevity factor. dof4.1 loss-of-function plants generate seeds exhibiting higher germination after accelerated aging assays. DOF4.1 is expressed during seed development and RNAseq data show several putative factors that could contribute to the dof4.1 seed longevity phenotype. dof4.1 has reduced seed permeability and a higher levels of seed storage proteins mRNAs (cruciferins and napins) in developing seeds, as compared to wild-type seeds. It has been reported that mutant lines defective in cruciferins or napins present reduced seed longevity. The improved longevity of dof4.1 is totally lost in the quadruple mutant dof4.1 cra crb crc, but not in a dof4.1 line depleted of napins, suggesting a prominent role for cruciferins in this process. Moreover, a negative regulation of DOF4.1 expression by the transcription factor DOF1.8 is suggested by co-inoculation assays in Nicotiana benthamiana. Indeed, DOF1.8 expression anticorrelates with that of DOF4.1 during seed development. In summary, modulation of DOF4.1 levels during seed development contributes to regulate seed longevity.This study was funded by the Spanish Ministry of Science and Education, action BIO2014-52621-R.Niñoles Rodenes, R.; Ruiz-Pastor, CM.; Arjona-Mudarra, P.; Casañ-Perello, J.; Renard, J.; Bueso Rodenas, E.; Mateos, R.... (2022). Transcription Factor DOF4.1 Regulates Seed Longevity in Arabidopsis via Seed Permeability and Modulation of Seed Storage Protein Accumulation. Frontiers in Plant Science. 13:1-14. https://doi.org/10.3389/fpls.2022.9151841141
    corecore