2,178 research outputs found

    Real-Time Imaging of K atoms on Graphite: Interactions and Diffusion

    Full text link
    Scanning tunneling microscopy (STM) at liquid helium temperature is used to image potassium adsorbed on graphite at low coverage (~0.02 monolayer). Single atoms appear as protrusions on STM topographs. A statistical analysis of the position of the atoms demonstrates repulsion between adsorbates, which is quantified by comparison with molecular dynamics simulations. This gives access to the dipole moment of a single adsorbate, found to be 10.5 Debye. Time lapse imaging shows that long range order is broken by thermally activated diffusion, with a 32 meV barrier to hopping between graphite lattice sites

    Polarimetric observations of comet Levy 1990c and of other comets: Some clues to the evolution of cometary dust

    Get PDF
    The evolution with the phase angle alpha of the polarization degree P of light scattered by comet Halley's dust is well documented. No significant discrepancy is found between Halley and Levy polarization curves near the inversion point. From all available cometary observations, we have derived polarimetric synthetic curves. Typically, a set of about 200 data points in the red wavelengths range exhibits a minimum for (alpha approximately equals 10.3 degrees, P approximately equals 1.8 percent) and an inversion point for (alpha approximately equals 22.4 degrees, P = 0 percent), with a slop of about 0.27 percent per degree. A significant spreading of some data (comets Austin 1982VI, Austin 1989c1, West 1976VI) is found at large phase angles. The analysis of our polarimetric maps of Levy reveals that the inner coma is heterogeneous. The increase of the inversion angle value with increasing distance from the photometric center is suspected to be due to the evolution with time of grains ejected from the nucleus. A fan like structure could be produced by a jet of grains freshly ejected

    Conductance fluctuations in quasi-two-dimensional systems: a practical view

    Full text link
    The universal conductance fluctuations of quasi-two-dimensional systems are analyzed with experimental considerations in mind. The traditional statistical metrics of these fluctuations (such as variance) are shown to have large statistical errors in such systems. An alternative characteristic is identified, the inflection point of the correlation function in magnetic field, which is shown to be significantly more useful as an experimental metric and to give a more robust measure of phase coherence.Comment: 9 pages, 7 figure

    Electron transport through antidot superlattices in Si/SiGeSi/SiGe heterostructures: new magnetoresistance resonances in lattices with large diameter antidots

    Get PDF
    In the present work we have investigated the transport properties in a number of Si/SiGe samples with square antidot lattices of different periods. In samples with lattice periods equal to 700 nm and 850 nm we have observed the conventional low-field commensurability magnetoresistance peaks consistent with the previous observations in GaAs/AlGaAs and Si/SiGe samples with antidot lattices. In samples with a 600 nm lattice period a new series of well-developed magnetoresistance oscillations has been found beyond the last commensurability peak which are supposed to originate from periodic skipping orbits encircling an antidot with a particular number of bounds.Comment: To appear in EuroPhys. Let

    Update on the ICUD-SIU consultation on multi-parametric magnetic resonance imaging in localised prostate cancer

    Get PDF
    Introduction: Prostate cancer (PCa) imaging is a rapidly evolving field. Dramatic improvements in prostate MRI during the last decade will probably change the accuracy of diagnosis. This chapter reviews recent current evidence about MRI diagnostic performance and impact on PCa management. Materials and methods: The International Consultation on Urological Diseases nominated a committee to review the literature on prostate MRI. A search of the PubMed database was conducted to identify articles focussed on MP-MRI detection and staging protocols, reporting and scoring systems, the role of MP-MRI in diagnosing PCa prior to biopsy, in active surveillance, in focal therapy and in detecting local recurrence after treatment. Results: Differences in opinion were reported in the use of the strength of magnets [1.5 Tesla (T) vs. 3T] and coils. More agreement was found regarding the choice of pulse sequences; diffusion-weighted MRI (DW-MRI), dynamic contrast-enhanced MRI (DCE MRI), and/or MR spectroscopy imaging (MRSI) are recommended in addition to conventional T2-weighted anatomical sequences. In 2015, the Prostate Imaging Reporting and Data System (PI-RADS version 2) was described to standardize image acquisition and interpretation. MP-MRI improves detection of clinically significant PCa (csPCa) in the repeat biopsy setting or before the confirmatory biopsy in patients considering active surveillance. It is useful to guide focal treatment and to detect local recurrences after treatment. Its role in biopsy-naive patients or during the course of active surveillance remains debated. Conclusion: MP-MRI is increasingly used to improve detection of csPCa and for the selection of a suitable therapeutic approach

    Top quark production at future lepton colliders in the asymptotic regime

    Get PDF
    The production of a tt(bar) pair from lepton-antilepton annihilation is considered for values of the center of mass energy much larger than the top mass, typically of the few TeV size. In this regime a number of simplifications occurs that allows to derive the leading asymptotic terms of various observables using the same theoretical description that was used for light quark production. Explicit examples are shown for the Standard Model and the Minimal Supersymmetric Standard Model cases.Comment: 20 pages and 13 figures. e-mail: [email protected]

    New and Standard Physics contributions to anomalous Z and gamma self-couplings

    Full text link
    We examine the Standard and the New Physics (NP) contributions to the ZZZ, ZZgamma and Zgammagamma neutral gauge couplings. At the one-loop level, if we assume that there is no CP violation contained in NP beyond the Standard Model one, we find that only CP conserving neutral gauge couplings are generated, either from the standard quarks and leptons, or from possible New Physics (NP) fermions. Bosonic one-loop diagrams never contribute to these couplings, while the aforementioned fermionic contributions satisfy hZ3=-fgamma5, hZ4=hgamma4=0. We also study examples of two-loop NP effects that could generate non vanishing h4 couplings. We compare quantitative estimates from SM, MSSM and some specific examples of NP contributions, and we discuss their observability at future colliders.Comment: 20 pages and 9 figures. e-mail: [email protected]
    corecore