45 research outputs found

    Aspirin impairs acetyl-coenzyme A metabolism in redox-compromised yeast cells

    Get PDF
    Aspirin is a widely used anti-inflammatory and antithrombotic drug also known in recent years for its promising chemopreventive antineoplastic properties, thought to be mediated in part by its ability to induce apoptotic cell death. However, the full range of mechanisms underlying aspirin’s cancer-preventive properties is still elusive. In this study, we observed that aspirin impaired both the synthesis and transport of acetyl-coenzyme A (acetyl-CoA) into the mitochondria of manganese superoxide dismutase (MnSOD)-deficient Saccharomyces cerevisiae EG110 yeast cells, but not of the wild-type cells, grown aerobically in ethanol medium. This occurred at both the gene level, as indicated by microarray and qRT-PCR analyses, and at the protein level as indicated by enzyme assays. These results show that in redox-compromised MnSOD-deficient yeast cells, but not in wild-type cells, aspirin starves the mitochondria of acetyl-CoA and likely causes energy failure linked to mitochondrial damage, resulting in cell death. Since acetyl-CoA is one of the least-studied targets of aspirin in terms of the latter’s propensity to prevent cancer, this work may provide further mechanistic insight into aspirin’s chemopreventive behavior with respect to early stage cancer cells, which tend to have downregulated MnSOD and are also redox-compromised.Austrian Science Fund, Malta Council for Science and Technology and Bundesministerium für Wissenschaft, Forschung und Wirtschaft.peer-reviewe

    Aspirin impairs the carnitine shuttle pathway in redox-compromised yeast cells : implications for cancer chemoprevention and Reye’s syndrome

    Get PDF
    Acetylcoenzyme A (acetyl-CoA) plays an important role in cellular metabolism. It is an essential substrate for energy production in the tricarboxylic acid (TCA) cycle. In yeast cells grown on ethanol as the carbon source, acetyl-CoA is generated in the peroxisomes and cytosol, and then transpOlted into mitochondria by the carnitine shuttle pathway. We use yeast as a eukaryotic model since it offers large experimental advantages in conditions controlled by multiple genes.peer-reviewe

    Defining Disease, Diagnosis, and Translational Medicine within a Homeostatic Perturbation Paradigm: The National Institutes of Health Undiagnosed Diseases Program Experience.

    No full text
    Traditionally, the use of genomic information for personalized medical decisions relies on prior discovery and validation of genotype-phenotype associations. This approach constrains care for patients presenting with undescribed problems. The National Institutes of Health (NIH) Undiagnosed Diseases Program (UDP) hypothesized that defining disease as maladaptation to an ecological niche allows delineation of a logical framework to diagnose and evaluate such patients. Herein, we present the philosophical bases, methodologies, and processes implemented by the NIH UDP. The NIH UDP incorporated use of the Human Phenotype Ontology, developed a genomic alignment strategy cognizant of parental genotypes, pursued agnostic biochemical analyses, implemented functional validation, and established virtual villages of global experts. This systematic approach provided a foundation for the diagnostic or non-diagnostic answers provided to patients and serves as a paradigm for scalable translational research. Front Med (Lausanne) 2017 May 26; 4:62
    corecore