22,979 research outputs found
Solving Dirac equations on a 3D lattice with inverse Hamiltonian and spectral methods
A new method to solve the Dirac equation on a 3D lattice is proposed, in
which the variational collapse problem is avoided by the inverse Hamiltonian
method and the fermion doubling problem is avoided by performing spatial
derivatives in momentum space with the help of the discrete Fourier transform,
i.e., the spectral method. This method is demonstrated in solving the Dirac
equation for a given spherical potential in 3D lattice space. In comparison
with the results obtained by the shooting method, the differences in single
particle energy are smaller than ~MeV, and the densities are almost
identical, which demonstrates the high accuracy of the present method. The
results obtained by applying this method without any modification to solve the
Dirac equations for an axial deformed, non-axial deformed, and octupole
deformed potential are provided and discussed.Comment: 18 pages, 6 figure
Thorium-doping induced superconductivity up to 56 K in Gd1-xThxFeAsO
Following the discovery of superconductivity in an iron-based arsenide
LaO1-xFxFeAs with a superconducting transition temperature (Tc) of 26 K[1], Tc
was pushed up surprisingly to above 40 K by either applying pressure[2] or
replacing La with Sm[3], Ce[4], Nd[5] and Pr[6]. The maximum Tc has climbed to
55 K, observed in SmO1-xFxFeAs[7, 8] and SmFeAsO1-x[9]. The value of Tc was
found to increase with decreasing lattice parameters in LnFeAsO1-xFx (Ln stands
for the lanthanide elements) at an apparently optimal doping level. However,
the F- doping in GdFeAsO is particularly difficult[10,11] due to the lattice
mismatch between the Gd2O2 layers and Fe2As2 layers. Here we report observation
of superconductivity with Tc as high as 56 K by the Th4+ substitution for Gd3+
in GdFeAsO. The incorporation of relatively large Th4+ ions relaxes the lattice
mismatch, hence induces the high temperature superconductivity.Comment: 4 pages, 3 figure
Distributed Adaptive Attitude Synchronization of Multiple Spacecraft
This paper addresses the distributed attitude synchronization problem of
multiple spacecraft with unknown inertia matrices. Two distributed adaptive
controllers are proposed for the cases with and without a virtual leader to
which a time-varying reference attitude is assigned. The first controller
achieves attitude synchronization for a group of spacecraft with a leaderless
communication topology having a directed spanning tree. The second controller
guarantees that all spacecraft track the reference attitude if the virtual
leader has a directed path to all other spacecraft. Simulation examples are
presented to illustrate the effectiveness of the results.Comment: 13 pages, 11 figures. To appear in SCIENCE CHINA Technological
Science
Wilson Fermions on a Randomly Triangulated Manifold
A general method of constructing the Dirac operator for a randomly
triangulated manifold is proposed. The fermion field and the spin connection
live, respectively, on the nodes and on the links of the corresponding dual
graph. The construction is carried out explicitly in 2-d, on an arbitrary
orientable manifold without boundary. It can be easily converted into a
computer code. The equivalence, on a sphere, of Majorana fermions and Ising
spins in 2-d is rederived. The method can, in principle, be extended to higher
dimensions.Comment: 18 pages, latex, 6 eps figures, fig2 corrected, Comment added in the
conclusion sectio
Possibility of Unconventional Pairing Due to Coulomb Interaction in Fe-Based Pnictide Superconductors: Perturbative Analysis of Multi-Band Hubbard Models
Possibility of unconventional pairing due to Coulomb interaction in
iron-pnictide superconductors is studied by applying a perturbative approach to
realistic 2- and 5-band Hubbard models. The linearized Eliashberg equation is
solved by expanding the effective pairing interaction perturbatively up to
third order in the on-site Coulomb integrals. The numerical results for the
5-band model suggest that the eigenvalues of the Eliashberg equation are
sufficiently large to explain the actual high Tc for realistic values of
Coulomb interaction and the most probable pairing state is spin-singlet s-wave
without any nodes just on the Fermi surfaces, although the superconducting
order parameter changes its sign between the small Fermi pockets. On the other
hand the 2-band model is quite insufficient to explain the actual high Tc.Comment: 2 pages, 3 figures. Proceedings of the Intl. Symposium on
Fe-Oxypnictide Superconductors (Tokyo, 28-29th June 2008
Superconductivity in heavily boron-doped silicon carbide
The discoveries of superconductivity in heavily boron-doped diamond (C:B) in
2004 and silicon (Si:B) in 2006 renew the interest in the superconducting state
of semiconductors. Charge-carrier doping of wide-gap semiconductors leads to a
metallic phase from which upon further doping superconductivity can emerge.
Recently, we discovered superconductivity in a closely related system:
heavily-boron doped silicon carbide (SiC:B). The sample used for that study
consists of cubic and hexagonal SiC phase fractions and hence this lead to the
question which of them participates in the superconductivity. Here we focus on
a sample which mainly consists of hexagonal SiC without any indication for the
cubic modification by means of x-ray diffraction, resistivity, and ac
susceptibility.Comment: 9 pages, 5 figure
Surface phase separation in nanosized charge-ordered manganites
Recent experiments showed that the robust charge-ordering in manganites can
be weakened by reducing the grain size down to nanoscale. Weak ferromagnetism
was evidenced in both nanoparticles and nanowires of charge-ordered manganites.
To explain these observations, a phenomenological model based on surface phase
separation is proposed. The relaxation of superexchange interaction on the
surface layer allows formation of a ferromagnetic shell, whose thickness
increases with decreasing grain size. Possible exchange bias and softening of
the ferromagnetic transition in nanosized charge-ordered manganites are
predicted.Comment: 4 pages, 3 figure
Physio-chemical and antibacterial characteristics of pressure spun nylon nanofibres embedded with functional silver nanoparticles
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Date of Acceptance: 05/06/2015A novel and facile approach to prepare hybrid nanoparticle embedded polymer nanofibers using pressurised gyration is presented. Silver nanoparticles and nylon polymer were used in this work. The polymer solution's physical properties, rotating speed and the working pressure had a significant influence on the fibre diameter and the morphology. Fibres in the range of 60–500 nm were spun using 10 wt.%, 15 wt.% and 20 wt.% nylon solutions and these bead-free fibres were processed under 0.2 MPa and 0.3 MPa working pressure and a rotational speed of 36,000 rpm. 1–4 wt.% of Ag was added to these nylon solutions and in the case of wt.% fibres in the range 50–150 nm were prepared using the same conditions of pressurised gyration. Successful incorporation of the Ag nanoparticles in nylon nanofibres was confirmed by using a combination of advanced microscopical techniques and Raman spectrometry was used to study the bonding characteristics of nylon and the Ag nanoparticles. Inductively coupled plasma mass spectroscopy showed a substantial concentration of Ag ions in the nylon fibre matrix which is essential for producing effective antibacterial properties. Antibacterial activity of the Ag-loaded nanofibres shows higher efficacy than nylon nanofibres for Gram-negative Escherichia coli and Pseudomonas aeruginosa microorganisms, and both Ag nanoparticles and the Ag ions were found to be the reason for enhanced cell death in the bacterial solutionPeer reviewe
- …