32,358 research outputs found

    Experiment and theoretical study of the propagation of high power microwave pulse in air breakdown environment

    Get PDF
    In the study of the propagation of high power microwave pulse, one of the main concerns is how to minimize the energy loss of the pulse before reaching the destination. In the very high power region, one has to prevent the cutoff reflection caused by the excessive ionization in the background air. A frequency auto-conversion process which can lead to reflectionless propagation of powerful EM pulses in self-generated plasmas is studied. The theory shows that under the proper conditions the carrier frequency, omega, of the pulse will indeed shift upward with the growth of plasma frequency, omega(sub pe). Thus, the plasma during breakdown will always remain transparent to the pulse (i.e., omega greater than omega(sub pe)). A chamber experiment to demonstrate the frequency auto-conversion during the pulse propagation through the self-generated plasma is then conducted in a chamber. The detected frequency shift is compared with the theoretical result calculated y using the measured electron density distribution along the propagation path of the pulse. Good agreement between the theory and the experiment results is obtained

    Refinement and growth enhancement of Al2Cu phase during magnetic field assisting directional solidification of hypereutectic Al-Cu alloy.

    Get PDF
    International audienceUnderstanding how the magnetic fields affect the formation of reinforced phase during solidification is crucial to tailor the structure and therefor the performance of metal matrix in situ composites. In this study, a hypereutectic Al-40 wt.% Cu alloy has been directionally solidified under various axial magnetic fields and the morphology of Al2Cu phase was quantified in 3D by means of high resolution synchrotron X-ray tomography. With rising magnetic fields, both increase of Al2Cu phase's total volume and decrease of each column's transverse section area were found. These results respectively indicate the growth enhancement and refinement of the primary Al2Cu phase in the magnetic field assisting directional solidification. The thermoelectric magnetic forces (TEMF) causing torque and dislocation multiplication in the faceted primary phases were thought dedicate to respectively the refinement and growth enhancement. To verify this, a real structure based 3D simulation of TEMF in Al2Cu column was carried out, and the dislocations in the Al2Cu phase obtained without and with a 10T high magnetic field were analysed by the transmission electron microscope

    Topological Properties of Spatial Coherence Function

    Full text link
    Topology of the spatial coherence function is considered in details. The phase singularity (coherence vortices) structures of coherence function are classified by Hopf index and Brouwer degree in topology. The coherence flux quantization and the linking of the closed coherence vortices are also studied from the topological properties of the spatial coherence function.Comment: 9 page

    Adsorption/desorption and electrically controlled flipping of ammonia molecules on graphene

    Get PDF
    In this paper, we evaluate of the adsorption/ desorption of ammonia molecules on a graphene surface by studying the Fermi level shift. Based on a physically plausible model, the adsorption and desorption rates of ammonia molecules on graphene have been extracted from the measured Fermi level shift as a function of exposure time. An electric field-induced flipping behavior of ammonia molecules on graphene is suggested, based on field effect transistor (FET) measurements

    Entropy Driven Dimerization in a One-Dimensional Spin-Orbital Model

    Full text link
    We study a new version of the one-dimensional spin-orbital model with spins S=1 relevant to cubic vanadates. At small Hund's coupling J_H we discover dimerization in a pure electronic system solely due to a dynamical spin-orbital coupling. Above a critical value J_H, a uniform ferromagnetic state is stabilized at zero temperature. More surprisingly, we observe a temperature driven dimerization of the ferrochain, which occurs due to a large entropy released by dimer states. This dynamical dimerization seems to be the mechanism driving the peculiar intermediate phase of YVO_3.Comment: 5 pages, 4 figure

    Possibility of Unconventional Pairing Due to Coulomb Interaction in Fe-Based Pnictide Superconductors: Perturbative Analysis of Multi-Band Hubbard Models

    Full text link
    Possibility of unconventional pairing due to Coulomb interaction in iron-pnictide superconductors is studied by applying a perturbative approach to realistic 2- and 5-band Hubbard models. The linearized Eliashberg equation is solved by expanding the effective pairing interaction perturbatively up to third order in the on-site Coulomb integrals. The numerical results for the 5-band model suggest that the eigenvalues of the Eliashberg equation are sufficiently large to explain the actual high Tc for realistic values of Coulomb interaction and the most probable pairing state is spin-singlet s-wave without any nodes just on the Fermi surfaces, although the superconducting order parameter changes its sign between the small Fermi pockets. On the other hand the 2-band model is quite insufficient to explain the actual high Tc.Comment: 2 pages, 3 figures. Proceedings of the Intl. Symposium on Fe-Oxypnictide Superconductors (Tokyo, 28-29th June 2008

    Magnetic Interaction in the Geometrically Frustrated Triangular Lattice Antiferromagnet CuFeO2\rm CuFeO_2

    Full text link
    The spin wave excitations of the geometrically frustrated triangular lattice antiferromagnet (TLA) CuFeO2\rm CuFeO_2 have been measured using high resolution inelastic neutron scattering. Antiferromagnetic interactions up to third nearest neighbors in the ab plane (J_1, J_2, J_3, with J2/J10.44J_2/J_1 \approx 0.44 and J3/J10.57J_3/J_1 \approx 0.57), as well as out-of-plane coupling (J_z, with Jz/J10.29J_z/J_1 \approx 0.29) are required to describe the spin wave dispersion relations, indicating a three dimensional character of the magnetic interactions. Two energy dips in the spin wave dispersion occur at the incommensurate wavevectors associated with multiferroic phase, and can be interpreted as dynamic precursors to the magnetoelectric behavior in this system.Comment: 4 pages, 4 figures, published in Phys. Rev. Let

    CEO Hometown Identity and Firm Green Innovation

    Get PDF
    Drawn on the upper echelons theory, this study investigates how chief executive officer (CEO) hometown identity drives firm green innovation. We propose that CEO hometown identity has a positive impact on a firm's green innovation performance. Furthermore, we explore the moderating role of managerial discretion determined by organizational and environmental factors (i.e., institutional ownership and market complexity). We propose that institutional ownership negatively moderates the positive relationship between CEO hometown identity and green innovation, but market complexity plays a positive moderating role. Using Chinese publicly listed firms from 2002 to 2016 in heavily polluting industries, our findings support these hypotheses. Our research contributes to the upper echelons theory and corporate social responsibility literature and has substantial practical implications

    Recurrence interval analysis of high-frequency financial returns and its application to risk estimation

    Full text link
    We investigate the probability distributions of the recurrence intervals τ\tau between consecutive 1-min returns above a positive threshold q>0q>0 or below a negative threshold q<0q<0 of two indices and 20 individual stocks in China's stock market. The distributions of recurrence intervals for positive and negative thresholds are symmetric, and display power-law tails tested by three goodness-of-fit measures including the Kolmogorov-Smirnov (KS) statistic, the weighted KS statistic and the Cram\'er-von Mises criterion. Both long-term and shot-term memory effects are observed in the recurrence intervals for positive and negative thresholds qq. We further apply the recurrence interval analysis to the risk estimation for the Chinese stock markets based on the probability Wq(Δt,t)W_q(\Delta{t},t), Value-at-Risk (VaR) analysis and VaR analysis conditioned on preceding recurrence intervals.Comment: 17 pages, 10 figures, 1 tabl
    corecore