113 research outputs found

    Null mutation for Macrophage Migration Inhibitory Factor (MIF) is associated with less aggressive bladder cancer in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inflammatory cytokines may promote tumorigenesis. Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine with regulatory properties over tumor suppressor proteins involved in bladder cancer. We studied the development of bladder cancer in wild type (WT) and MIF knockout (KO) mice given N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN), a known carcinogen, to determine the role of MIF in bladder cancer initiation and progression.</p> <p>Methods</p> <p>5-month old male C57Bl/6 MIF WT and KO mice were treated with and without BBN. Animals were sacrificed at intervals up to 23 weeks of treatment. Bladder tumor stage and grade were evaluated by H&E. Immunohistochemical (IHC) analysis was performed for MIF and platelet/endothelial cell adhesion molecule 1 (PECAM-1), a measure of vascularization. MIF mRNA was analyzed by quantitative real-time polymerase chain reaction.</p> <p>Results</p> <p>Poorly differentiated carcinoma developed in all BBN treated mice by week 20. MIF WT animals developed T2 disease, while KO animals developed only T1 disease. MIF IHC revealed predominantly urothelial cytoplasmic staining in the WT control animals and a shift toward nuclear staining in WT BBN treated animals. MIF mRNA levels were 3-fold higher in BBN treated animals relative to controls when invasive cancer was present. PECAM-1 staining revealed significantly more stromal vessels in the tumors in WT animals when compared to KOs.</p> <p>Conclusion</p> <p>Muscle invasive bladder cancer with increased stromal vascularity was associated with increased MIF mRNA levels and nuclear redistribution. Consistently lower stage tumors were seen in MIF KO compared to WT mice. These data suggest that MIF may play a role in the progression to invasive bladder cancer.</p

    Graphite and Hexagonal Boron-Nitride Possess the Same Interlayer Distance. Why?

    Full text link
    Graphite and hexagonal boron nitride (h-BN) are two prominent members of the family of layered materials possessing a hexagonal lattice. While graphite has non-polar homo-nuclear C-C intra-layer bonds, h-BN presents highly polar B-N bonds resulting in different optimal stacking modes of the two materials in bulk form. Furthermore, the static polarizabilities of the constituent atoms considerably differ from each other suggesting large differences in the dispersive component of the interlayer bonding. Despite these major differences both materials present practically identical interlayer distances. To understand this finding, a comparative study of the nature of the interlayer bonding in both materials is presented. A full lattice sum of the interactions between the partially charged atomic centers in h-BN results in vanishingly small monopolar electrostatic contributions to the interlayer binding energy. Higher order electrostatic multipoles, exchange, and short-range correlation contributions are found to be very similar in both materials and to almost completely cancel out by the Pauli repulsions at physically relevant interlayer distances resulting in a marginal effective contribution to the interlayer binding. Further analysis of the dispersive energy term reveals that despite the large differences in the individual atomic polarizabilities the hetero-atomic B-N C6 coefficient is very similar to the homo-atomic C-C coefficient in the hexagonal bulk form resulting in very similar dispersive contribution to the interlayer binding. The overall binding energy curves of both materials are thus very similar predicting practically the same interlayer distance and very similar binding energies.Comment: 18 pages, 5 figures, 2 table

    A subgroup of SGS3-like proteins act redundantly in RNA-directed DNA methylation

    Get PDF
    Plant specific SGS3-like proteins are composed of various combinations of an RNA-binding XS domain, a zinc-finger zf-XS domain, a coil–coil domain and a domain of unknown function called XH. In addition to being involved in de novo 2 (IDN2) and SGS3, the Arabidopsis genome encodes 12 uncharacterized SGS3-like proteins. Here, we show that a group of SGS3-like proteins act redundantly in RNA-directed DNA methylation (RdDM) pathway in Arabidopsis. Transcriptome co-expression analyses reveal significantly correlated expression of two SGS3-like proteins, factor of DNA methylation 1 (FDM1) and FDM2 with known genes required for RdDM. The fdm1 and fdm2 double mutations but not the fdm1 or fdm2 single mutations significantly impair DNA methylation at RdDM loci, release transcriptional gene silencing and dramatically reduce the abundance of siRNAs originated from high copy number repeats or transposons. Like IDN2 and SGS3, FDM1 binds dsRNAs with 5β€² overhangs. Double mutant analyses also reveal that IDN2 and three uncharacterized SGS3-like proteins FDM3, FDM4 and FDM5 have overlapping function with FDM1 in RdDM. Five FDM proteins and IDN2 define a group of SGS3-like proteins that possess all four-signature motifs in Arabidopsis. Thus, our results demonstrate that this group of SGS3-like proteins is an important component of RdDM. This study further enhances our understanding of the SGS3 gene family and the RdDM pathway

    The Non-Catalytic Carboxyl-Terminal Domain of ARFGAP1 Regulates Actin Cytoskeleton Reorganization by Antagonizing the Activation of Rac1

    Get PDF
    The regulation of the actin cytoskeleton and membrane trafficking is coordinated in mammalian cells. One of the regulators of membrane traffic, the small GTP-binding protein ARF1, also activates phosphatidylinositol kinases that in turn affect actin polymerization. ARFGAP1 is a GTPase activating protein (GAP) for ARF1 that is found on Golgi membranes. We present evidence that ARFGAP1 not only serves as a GAP for ARF1, but also can affect the actin cytoskeleton.As cells attach to a culture dish foci of actin appear prior to the cells flattening and spreading. We have observed that overexpression of a truncated ARFGAP1 that lacks catalytic activity for ARF, called GAP273, caused these foci to persist for much longer periods than non-transfected cells. This phenomenon was dependent on the level of GAP273 expression. Furthermore, cell spreading after re-plating or cell migration into a previously scraped area was inhibited in cells transfected with GAP273. Live cell imaging of such cells revealed that actin-rich membrane blebs formed that seldom made protrusions of actin spikes or membrane ruffles, suggesting that GAP273 interfered with the regulation of actin dynamics during cell spreading. The over-expression of constitutively active alleles of ARF6 and Rac1 suppressed the effect of GAP273 on actin. In addition, the activation of Rac1 by serum, but not that of RhoA or ARF6, was inhibited in cells over-expressing GAP273, suggesting that Rac1 is a likely downstream effector of ARFGAP1. The carboxyl terminal 65 residues of ARFGAP1 were sufficient to produce the effects on actin and cell spreading in transfected cells and co-localized with cortical actin foci.ARFGAP1 functions as an inhibitor upstream of Rac1 in regulating actin cytoskeleton. In addition to its GAP catalytic domain and Golgi binding domain, it also has an actin regulation domain in the carboxyl-terminal portion of the protein

    Macrophage Migration Inhibitory Factor Antagonist Blocks the Development of Endometriosis In Vivo

    Get PDF
    Endometriosis, a disease of reproductive age women, is a major cause of infertility, menstrual disorders and pelvic pain. Little is known about its etiopathology, but chronic pelvic inflammation is a common feature in affected women. Beside symptomatic treatment of endometriosis-associated pain, only two main suboptimal therapeutic approaches (hormonal and invasive surgery) are generally recommended to patients and no specific targeted treatment is available. Our studies led to the detection of a marked increase in the expression of macrophage migration inhibitory factor (MIF) in the eutopic endometrium, the peripheral blood and the peritoneal fluid of women with endometriosis, and in early, vascularized and active endometriotic lesions. Herein, we developed a treatment model of endometriosis, where human endometrial tissue was first allowed to implant into the peritoneal cavity of nude mice, to assess in vivo the effect of a specific antagonist of MIF (ISO-1) on the progression of endometriosis and evaluate its efficacy as a potential therapeutic tool. Administration of ISO-1 led to a significant decline of the number, size and in situ dissemination of endometriotic lesions. We further showed that ISO-1 may act by significantly inhibiting cell adhesion, tissue remodeling, angiogenesis and inflammation as well as by altering the balance of pro- and anti-apoptotic factors. Actually, mice treatment with ISO-1 significantly reduced the expression of cell adhesion receptors αv and ß3 integrins (P<0.05), matrix metalloproteinases (MMP) 2 and 9 (P<0.05), vascular endothelial cell growth factor (VEGF) (P<0.01), interleukin 8 (IL8) (P<0.05), cyclooxygenease (COX)2 (P<0.001) and the anti-apoptotic protein Bcl2 (P<0.01), but significantly induced the expression of Bax (P<0.05), a potent pro-apoptotic protein. These data provide evidence that specific inhibition of MIF alters endometriotic tissue growth and progression in vivo and may represent a promising potential therapeutic avenue

    Sensitizing effects of lafutidine on CGRP-containing afferent nerves in the rat stomach

    No full text
    1. Capsaicin sensitive afferent nerves play an important role in gastric mucosal defensive mechanisms. Capsaicin stimulates afferent nerves and enhances the release of calcitonin gene-related peptide (CGRP), which seems to be the predominant neurotransmitter of spinal afferents in the rat stomach, exerting many pharmacological effects by a direct mechanism or indirectly through second messengers such as nitric oxide (NO). 2. Lafutidine is a new type of anti-ulcer drug, possessing both an antisecretory effect, exerted via histamine H(2) receptor blockade, and gastroprotective activities. Studies with certain antagonists or chemical deafferentation techniques suggest the gastroprotective actions of lafutidine to be mediated by capsaicin sensitive afferent nerves, but this is an assumption based on indirect techniques. In order to explain the direct relation of lafutidine to afferent nerves, we conducted the following studies. 3. We determined CGRP and NO release from rat stomach and specific [(3)H]-resiniferatoxin (RTX) binding to gastric vanilloid receptor subtype 1 (VR1), which binds capsaicin, using EIA, a microdialysis system and a radioreceptor assay, respectively. 4. Lafutidine enhanced both CGRP and NO release from the rat stomach induced by a submaximal dose of capsaicin, but had no effect on specific [(3)H]-RTX and capsaicin binding to VR1. 5. In conclusion, our findings demonstrate that lafutidine modulates the activity of capsaicin sensitive afferent nerves in the rat stomach, which may be a key mechanism involved in its gastroprotective action

    A Prospective Cohort Study Assessing the Relationship between Plasma Levels of Osimertinib and Treatment Efficacy and Safety

    No full text
    Osimertinib is a standard treatment for patients with EGFR-mutated non-small cell lung carcinoma (NSCLC). We evaluated the relationship between plasma osimertinib concentrations and treatment outcome in patients with NSCLC for this cohort study. The plasma levels of osimertinib and its metabolite AZ5104 were measured a week after the start of treatment (P1). The primary endpoint was to evaluate the correlation between plasma concentration and adverse events (AEs). The correlation with treatment efficacy was one of the secondary endpoints. In patients with CNS metastases, the concentration in the cerebrospinal fluid was also measured. Forty-one patients were enrolled. The frequency of AEs was highest for rash, followed by anorexia and thrombocytopenia. Thirty-eight cases provided measurements for P1. The median plasma concentration of osimertinib was 227 ng/mL, and that of AZ5104 was 16.5 ng/mL. The mean CNS penetration rate of two cases was 3.8%. The P1 in the group with anorexia was significantly higher than that in the group without anorexia (385.0 ng/mL vs. 231.5 ng/mL, p = 0.009). Divided into quartiles by P1 trough level, Q2 + Q3 (164–338 ng/mL) had longer PFS, while Q1 and Q4 had shorter PFS. An appropriate plasma level of osimertinib may avoid some adverse events and induce long PFS. Further large-scale trials are warranted
    • …
    corecore