4,186 research outputs found

    Adaptive Neural Network Feedforward Control for Dynamically Substructured Systems

    Get PDF
    (c) 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works

    Stochastic Nonlinear Control via Finite-dimensional Spectral Dynamic Embedding

    Full text link
    Optimal control is notoriously difficult for stochastic nonlinear systems. Ren et al. introduced Spectral Dynamics Embedding for developing reinforcement learning methods for controlling an unknown system. It uses an infinite-dimensional feature to linearly represent the state-value function and exploits finite-dimensional truncation approximation for practical implementation. However, the finite-dimensional approximation properties in control have not been investigated even when the model is known. In this paper, we provide a tractable stochastic nonlinear control algorithm that exploits the nonlinear dynamics upon the finite-dimensional feature approximation, Spectral Dynamics Embedding Control (SDEC), with an in-depth theoretical analysis to characterize the approximation error induced by the finite-dimension truncation and statistical error induced by finite-sample approximation in both policy evaluation and policy optimization. We also empirically test the algorithm and compare the performance with Koopman-based methods and iLQR methods on the pendulum swingup problem

    Modeling plant diseases under climate change: evolutionary perspectives

    Get PDF
    Infectious plant diseases are a major threat to global agricultural productivity, economic development, and ecological integrity. There is widespread concern that these social and natural disasters caused by infectious plant diseases may escalate with climate change and computer modeling offers a unique opportu-nity to address this concern. Here, we analyze the intrinsic problems associated with current modeling strategies and highlight the need to integrate evolutionary principles into polytrophic, eco-evolutionary frameworks to improve predictions. We particularly discuss how evolutionary shifts in functional trade-offs, relative adaptability between plants and pathogens, ecosystems, and climate preferences induced by climate change may feedback to future plant disease epidemics and how technological advances can facilitate the generation and integration of this relevant knowledge for better modeling predictions
    • …
    corecore