1,826 research outputs found

    General highlight detection in sport videos

    Get PDF
    Attention is a psychological measurement of human reflection against stimulus. We propose a general framework of highlight detection by comparing attention intensity during the watching of sports videos. Three steps are involved: adaptive selection on salient features, unified attention estimation and highlight identification. Adaptive selection computes feature correlation to decide an optimal set of salient features. Unified estimation combines these features by the technique of multi-resolution autoregressive (MAR) and thus creates a temporal curve of attention intensity. We rank the intensity of attention to discriminate boundaries of highlights. Such a framework alleviates semantic uncertainty around sport highlights and leads to an efficient and effective highlight detection. The advantages are as follows: (1) the capability of using data at coarse temporal resolutions; (2) the robustness against noise caused by modality asynchronism, perception uncertainty and feature mismatch; (3) the employment of Markovian constrains on content presentation, and (4) multi-resolution estimation on attention intensity, which enables the precise allocation of event boundaries

    Query generation from multiple media examples

    Get PDF
    This paper exploits an unified media document representation called feature terms for query generation from multiple media examples, e.g. images. A feature term refers to a value interval of a media feature. A media document is therefore represented by a frequency vector about feature term appearance. This approach (1) facilitates feature accumulation from multiple examples; (2) enables the exploration of text-based retrieval models for multimedia retrieval. Three statistical criteria, minimised chi-squared, minimised AC/DC rate and maximised entropy, are proposed to extract feature terms from a given media document collection. Two textual ranking functions, KL divergence and a BM25-like retrieval model, are adapted to estimate media document relevance. Experiments on the Corel photo collection and the TRECVid 2006 collection show the effectiveness of feature term based query in image and video retrieval

    Inference of mixed information in Formal Concept Analysis

    Get PDF
    Negative information can be considered twofold: by means of a negation operator or by capturing the absence of information. In this second approach, a new framework have to be developed: from the syntax to the semantics, including the management of such generalized knowledge representation. In this work we traverse all these issues in the framework of formal concept analysis, introducing a new set of inference rules to manage mixed (positive and negative) attributes.TIN2014-59471-P of the Science and Innovation Ministry of Spain, co-funded by the European Regional Development Fund (ERDF). UNIVERSIDAD DE MÁLAGA. Campus de Excelencia Internacional Andalucía Tech

    Classification for hyperspectral imaging

    Get PDF
    Hyperspectral Imaging is a method of collecting and processing the information across pre-defined electromagnetic spectrum. These measurements make it possible to derive a continuous spectrum for each pixel of the image. After necessary adjustments these image spectra can be compared with database of reflectance spectra in order to recognise tested materials. This project is conducted in cooperation between Fraunhofer Centre for Applied Photonics and Heriot-Watt Industrial Doctorate Centre in Photonics and Optics Technologies in partnership with University of Strathclyde. Fraunhofer Institute is known of world-class photonics solutions and this project aims in enhancement of one of their Hyperspectral Imaging systems with signal processing techniques. Set of classification procedures would be applied for the output of imaging spectrometer with the intention of spatial and spectral classification of objects captured by the spectrometer. Spatial classification is based on Support Vector Machine (SVM) classifier. Use of texture features of the objects is considered as a base for labelling of detected items. Spectral classification is based on Partial Least Squares (PLS) method. With database of calibration reflectance spectra, method this can be used for prediction of “end members” concentration and therefore identification of the objects captured on the hyperspectral image.

    Heavy Quarkonium States with the Holographic Potential

    Full text link
    The quarkonium states in a quark-gluon plasma is examined with the heavy quark potential implied by the holographic principle. Both the vanila AdS-Schwarzschild metric and the one with an infrared cutoff are considered. The dissociation temperature is calculated by solving the Schr\"o dinger equation of the potential model. In the case of the AdS-Schwarzschild metric with a IR cutoff, the dissociation temperatures for J/ψJ/\psi and Υ\Upsilon with the U-ansatz of the potential are found to agree with the lattice results within a factor of two.Comment: 9 pages with 2 figues in Revte

    Remote oil spill detection and monitoring on ice-covered waters

    Get PDF
    The spillage of oil in Polar Regions is particularly serious due to the threat to the environment and the difficulties in detecting and tracking the full extent of the oil seepage beneath the sea ice. Development of fast and reliable sensing techniques is highly desirable. In this paper hyperspectral imaging is proposed as a potential tool to detect the presence of oil beneath the sea ice. A feasibility study project was initiated to explore the detectability of the oil under ice layer. Some preliminary results obtained during this project are discussed

    Nernst effect of iron pnictide and cuprate superconductors: signatures of spin density wave and stripe order

    Full text link
    The Nernst effect has recently proven a sensitive probe for detecting unusual normal state properties of unconventional superconductors. In particular, it may sensitively detect Fermi surface reconstructions which are connected to a charge or spin density wave (SDW) ordered state, and even fluctuating forms of such a state. Here we summarize recent results for the Nernst effect of the iron pnictide superconductor LaO1xFxFeAs\rm LaO_{1-x}F_xFeAs, whose ground state evolves upon doping from an itinerant SDW to a superconducting state, and the cuprate superconductor La1.8xEu0.2SrxCuO4\rm La_{1.8-x}Eu_{0.2}Sr_xCuO_4 which exhibits static stripe order as a ground state competing with the superconductivity. In LaO1xFxFeAs\rm LaO_{1-x}F_xFeAs, the SDW order leads to a huge Nernst response, which allows to detect even fluctuating SDW precursors at superconducting doping levels where long range SDW order is suppressed. This is in contrast to the impact of stripe order on the normal state Nernst effect in La1.8xEu0.2SrxCuO4\rm La_{1.8-x}Eu_{0.2}Sr_xCuO_4. Here, though signatures of the stripe order are detectable in the temperature dependence of the Nernst coefficient, its overall temperature dependence is very similar to that of La2xSrxCuO4\rm La_{2-x}Sr_xCuO_4, where stripe order is absent. The anomalies which are induced by the stripe order are very subtle and the enhancement of the Nernst response due to static stripe order in La1.8xEu0.2SrxCuO4\rm La_{1.8-x}Eu_{0.2}Sr_xCuO_4 as compared to that of the pseudogap phase in La2xSrxCuO4\rm La_{2-x}Sr_xCuO_4, if any, is very small.Comment: To appear in: 'Properties and applications of thermoelectric materials - II', V. Zlatic and A. Hewson, editors, Proceedings of NATO Advanced Research Workshop, Hvar, Croatia, September 19 -25, 2011, NATO Science for Peace and Security Series B: Physics and Biophysics, (Springer Science+Business Media B.V. 2012

    Components of Natural Photosynthetic Apparatus in Solar Cells

    Get PDF
    Oxygenic photosynthesis is a process of light energy conversion into the chemical energy using water and carbon dioxide. The efficiency of energy conversion in the primary processes of photosynthesis is close to 100%. Therefore, for many years, photosynthesis has attracted the attention of researchers as the most efficient and eco-friendly pathway of solar energy conversion for alternative energy systems. The recent advances in the design of optimal solar cells include the creation of converters, in which thylakoid membranes, photosystems and whole cells of cyanobacteria immobilized on nanostructured electrode are used. As the mechanism of solar energy conversion in photosynthesis is sustainable and environmentally safe, it has a great potential as an example of renewable energy device. Application of pigments such as Chl f and Chl d will extend the spectral diapason of light transforming systems allow to absorb the far-red and near infra-red photons of the spectrum (in the range 700-750 nm). This article presents the recent achievements and challenges in the area of solar cells based on photosynthetic systems

    Magnetoresistance Effect in Spin-Polarized Junctions of Ferromagnetically Contacting Multiple Conductive Paths: Applications to Atomic Wires and Carbon Nanotubes

    Full text link
    For spin-polarized junctions of ferromagnetically contacting multiple conductive paths, such as ferromagnet (FM)/atomic wires/FM and FM/carbon nanotubes/FM junctions, we theoretically investigate spin-dependent transport to elucidate the intrinsic relation between the number of paths and conduction, and to enhance the magnetoresistance (MR) ratio. When many paths are randomly located between the two FMs, electronic wave interference between the FMs appears, and then the MR ratio increases with increasing number of paths. Furthermore, at each number of paths, the MR ratio for carbon nanotubes becomes larger than that for atomic wires, reflecting the characteristic shape of points in contact with the FM.Comment: 7 pages, 3 figures, accepted for publication in Phys. Rev.

    Raman Spectroscopic Measurement of a Vacuum-Deposited C60 Thin Film

    Get PDF
    Measurement of Raman shifts of a C60 thin film and the evaluation of their uncertainties were conducted. A C60 thin film with a thickness of about 1.2 μm was fabricated on a SiO2 substrate by vacuum deposition. Raman spectra of the C60 thin film were obtained using the laser beam power density of 5.7 103 mW mm-2. The measured Raman shifts were corrected according to the calibration curve that was prepared using sulfur and naphthalene as the reference samples. Standard uncertainties were calculated and combined in order to determine the combined uncertainty and the expanded uncertainty. It was found that the increase of measurement time and measurement points for the calibration curve leads to the higher reliability
    corecore