24,286 research outputs found

    Solving Dirac equations on a 3D lattice with inverse Hamiltonian and spectral methods

    Get PDF
    A new method to solve the Dirac equation on a 3D lattice is proposed, in which the variational collapse problem is avoided by the inverse Hamiltonian method and the fermion doubling problem is avoided by performing spatial derivatives in momentum space with the help of the discrete Fourier transform, i.e., the spectral method. This method is demonstrated in solving the Dirac equation for a given spherical potential in 3D lattice space. In comparison with the results obtained by the shooting method, the differences in single particle energy are smaller than 10410^{-4}~MeV, and the densities are almost identical, which demonstrates the high accuracy of the present method. The results obtained by applying this method without any modification to solve the Dirac equations for an axial deformed, non-axial deformed, and octupole deformed potential are provided and discussed.Comment: 18 pages, 6 figure

    Adaptive Neural Network Feedforward Control for Dynamically Substructured Systems

    Get PDF
    (c) 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works

    Theory of control of spin/photon interface for quantum networks

    Full text link
    A cavity coupling a charged nanodot and a fiber can act as a quantum interface, through which a stationary spin qubit and a flying photon qubit can be inter-converted via cavity-assisted Raman process. This Raman process can be controlled to generate or annihilate an arbitrarily shaped single-photon wavepacket by pulse-shaping the controlling laser field. This quantum interface forms the basis for many essential functions of a quantum network, including sending, receiving, transferring, swapping, and entangling qubits at distributed quantum nodes as well as a deterministic source and an efficient detector of a single photon wavepacket with arbitrarily specified shape and average photon number. Numerical study of noise effects on the operations shows high fidelity.Comment: 4 pages, 2 figure

    The qq-log-convexity of Domb's polynomials

    Full text link
    In this paper, we prove the qq-log-convexity of Domb's polynomials, which was conjectured by Sun in the study of Ramanujan-Sato type series for powers of π\pi. As a result, we obtain the log-convexity of Domb's numbers. Our proof is based on the qq-log-convexity of Narayana polynomials of type BB and a criterion for determining qq-log-convexity of self-reciprocal polynomials.Comment: arXiv admin note: substantial text overlap with arXiv:1308.273

    On the qq-log-convexity conjecture of Sun

    Full text link
    In his study of Ramanujan-Sato type series for 1/π1/\pi, Sun introduced a sequence of polynomials Sn(q)S_n(q) as given by Sn(q)=k=0n(nk)(2kk)(2(nk)nk)qk,S_n(q)=\sum\limits_{k=0}^n{n\choose k}{2k\choose k}{2(n-k)\choose n-k}q^k, and he conjectured that the polynomials Sn(q)S_n(q) are qq-log-convex. By imitating a result of Liu and Wang on generating new qq-log-convex sequences of polynomials from old ones, we obtain a sufficient condition for determining the qq-log-convexity of self-reciprocal polynomials. Based on this criterion, we then give an affirmative answer to Sun's conjecture

    Octet baryon masses in next-to-next-to-next-to-leading order covariant baryon chiral perturbation theory

    Full text link
    We study the ground-state octet baryon masses and sigma terms using the covariant baryon chiral perturbation theory (ChPT) with the extended-on-mass-shell (EOMS) renormalization scheme up to next-to-next-to-next-to-leading order (N3^3LO). By adjusting the available 19 low-energy constants (LECs), a reasonable fit of the nf=2+1n_f=2+1 lattice quantum chromodynamics (LQCD) results from the PACS-CS, LHPC, HSC, QCDSF-UKQCD and NPLQCD collaborations is achieved. Finite-volume corrections to the lattice data are calculated self-consistently. Our study shows that N3^3LO BChPT describes better the light quark mass evolution of the lattice data than the NNLO BChPT does and the various lattice simulations seem to be consistent with each other. We also predict the pion and strangeness sigma terms of the octet baryons using the LECs determined in the fit of their masses. The predicted pion- and strangeness-nucleon sigma terms are σπN=43(1)(6)\sigma_{\pi N}=43(1)(6) MeV and σsN=126(24)(54)\sigma_{s N}=126(24)(54) MeV, respectively.Comment: 28 pages, 6 figures, minor revisions, typos corrected, version to appear in JHE
    corecore