150 research outputs found

    Functional tests to guide management in an adult with loss of function of type-1 angiotensin II receptor

    Get PDF
    BACKGROUND: Genetic loss of function of AGT (angiotensinogen), REN (renin), ACE (angiotensin-converting enzyme), or AGTR1 (type-1 angiotensin II receptor) leads to renal tubular dysgenesis (RTD). This syndrome is almost invariably lethal. Most surviving patients reach stage 5 chronic kidney disease at a young age. METHODS: Here, we report a 28-year-old male with a homozygous truncating mutation in AGTR1 (p.Arg216*), who survived the perinatal period with a mildly impaired kidney function. In contrast to classic RTD, kidney biopsy showed proximal tubules that were mostly normal. During the subsequent three decades, we observed evidence of both tubular dysfunction (hyperkalemia, metabolic acidosis, salt-wasting and a urinary concentrating defect) and glomerular dysfunction (reduced glomerular filtration rate, currently ~30 mL/min/1.73 m(2), accompanied by proteinuria). To investigate the recurrent and severe hyperkalemia, we performed a patient-tailored functional test and showed that high doses of fludrocortisone induced renal potassium excretion by 155%. Furthermore, fludrocortisone lowered renal sodium excretion by 39%, which would have a mitigating effect on salt-wasting. In addition, urinary pH decreased in response to fludrocortisone. Opposite effects on urinary potassium and pH occurred with administration of amiloride, further supporting the notion that a collecting duct is present and able to react to fludrocortisone. CONCLUSIONS: This report provides living proof that even truncating loss-of-function mutations in AGTR1 are compatible with life and relatively good GFR and provides evidence for the prescription of fludrocortisone to treat hyperkalemia and salt-wasting in such patients. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00467-021-05018-7

    The impact of formative testing on study behaviour and study performance of (bio)medical students: a smartphone application intervention study.

    Get PDF
    BACKGROUND: Formative testing can increase knowledge retention but students often underuse available opportunities. Applying modern technology to make the formative tests more attractive for students could enhance the implementation of formative testing as a learning tool. This study aimed to determine whether formative testing using an internet-based application ("app") can positively affect study behaviour as well as study performance of (bio)medical students. METHODS: A formative testing app "Physiomics, to the next level" was introduced during a 4-week course to a large cohort (n = 461) of Dutch first year (bio)medical students of the Radboud University. The app invited students to complete 7 formative tests throughout the course. Each module was available for 3-4 days to stimulate the students to distribute their study activities throughout the 4-week course. RESULTS: 72% of the students used the app during the course. Study time significantly increased in intensive users (p < 0.001), while no changes were observed in moderate (p = 0.07) and non-users (p = 0.25). App-users obtained significantly higher grades during the final exam of the course (p < 0.05). Non-users more frequently failed their final exam (34%, OR 3.6, 95% CI: 2.0-6.4) compared to moderate users (19%) and intensive users (12%). Students with an average grade <6.5 during previous courses benefitted most from the app, as intensive (5.8 ± 0.9 / 36%) and moderate users (5.8 ± 0.9 / 33%) obtained higher grades and failed their exam less frequently compared to non-users (5.2 ± 1.1 / 61%). The app was also well appreciated by students; students scored the app with a grade of 7.3 ± 1.0 out of 10 and 59% of the students indicated that they would like the app to be implemented in future courses. CONCLUSIONS: A smartphone-based application of formative testing is an effective and attractive intervention to stimulate study behaviour and improve study performance in (bio) medical students

    Liquid Galaxy POIs Controller

    Get PDF
    Per tal de contextualitzar la proposta del TFG, al llarg d'aquesta memòria, presentarem el programa Google Summer of Code (durant la memòria també referenciat com a “GSoC”). Així doncs, introduirem els conceptes de GSoC, algunes dades històricament significatives, l’estructura que el composa, la seva organització, el procediment per a escollir els membres que en formaran part i la meva relació amb el programa. També explicarem breument què és el projecte Open Source Liquid Galaxy (d’aquí en endavant anomenat també com “LG”), en què consisteix, la relació amb els dos projectes que vam presentar al GSoC 2015 (Liquid Galaxy POIs Controller, el qual va ser finalment escollit, i Wikipedia Liquid Galaxy Mashup) i algunes de les seves característiques. Posteriorment, essent el nucli d’informació més rellevant d’aquesta memòria, expliquem les tasques realitzades prèviament a l’inici del projecte com són l’aprenentatge de tecnologies i llenguatges nous, la presa de requeriments i riscs, l’establiment dels objectius del projecte i el càlcul de la línia de temps que guia aquest. Definim l’estructura de la base de dades de l’aplicació i exposem exemples del seu funcionament, expliquem el disseny i l’estructura de l’aplicació, tant en aspectes a nivell d’usuari com a nivell d’implementació, detallem l’evolució de l’aplicació juntament amb els problemes sorgits i les corresponents solucions i finalment determinem les tasques que s’han de realitzar per finalitzar la implementació de l’aplicació juntament amb una avaluació del treball realitzat

    Sodium-dependent transporters in health and disease - a special issue

    Full text link
    Item does not contain fulltext1 januari 201

    Learning Physiology from Inherited Kidney Disorders

    Full text link
    The identification of genes causing inherited kidney diseases yielded crucial insights in the molecular basis of disease and improved our understanding of physiological processes that operate in the kidney. Monogenic kidney disorders are caused by mutations in genes coding for a large variety of proteins including receptors, channels and transporters, enzymes, transcription factors, and structural components, operating in specialized cell types that perform highly regulated homeostatic functions. Common variants in some of these genes are also associated with complex traits, as evidenced by genome-wide association studies in the general population. In this review, we discuss how the molecular genetics of inherited disorders affecting different tubular segments of the nephron improved our understanding of various transport processes and of their involvement in homeostasis, while providing novel therapeutic targets. These include inherited disorders causing a dysfunction of the proximal tubule (renal Fanconi syndrome), with emphasis on epithelial differentiation and receptor-mediated endocytosis, or affecting the reabsorption of glucose, the handling of uric acid, and the reabsorption of sodium, calcium, and magnesium along the kidney tubule

    Learning Physiology From Inherited Kidney Disorders

    No full text
    The identification of genes causing inherited kidney diseases yielded crucial insights in the molecular basis of disease and improved our understanding of physiological processes that operate in the kidney. Monogenic kidney disorders are caused by mutations in genes coding for a large variety of proteins including receptors, channels and transporters, enzymes, transcription factors, and structural components, operating in specialized cell types that perform highly regulated homeostatic functions. Common variants in some of these genes are also associated with complex traits, as evidenced by genome-wide association studies in the general population. In this review, we discuss how the molecular genetics of inherited disorders affecting different tubular segments of the nephron improved our understanding of various transport processes and of their involvement in homeostasis, while providing novel therapeutic targets. These include inherited disorders causing a dysfunction of the proximal tubule (renal Fanconi syndrome), with emphasis on epithelial differentiation and receptor-mediated endocytosis, or affecting the reabsorption of glucose, the handling of uric acid, and the reabsorption of sodium, calcium, and magnesium along the kidney tubule
    • …
    corecore