141 research outputs found

    Checkpoint recovery in cells: how a molecular understanding can help in the fight against cancer

    Get PDF
    Dysregulation of the cell cycle is the underlying mechanism of neoplasia. Healthy cells prevent propagation of DNA mutations to progeny by activation of cellular checkpoints, which allows time for DNA repair. On the other hand, activation of the DNA damage response is also the general principle of many current cancer treatments. Thus, recent advances in understanding how checkpoints in the cell cycle work at the molecular level open the door to new approaches to antitumor therapy

    Localized Aurora B activity spatially controls non-kinetochore microtubules during spindle assembly

    Get PDF
    Efficient spindle assembly involves the generation of spatial cues around chromosomes that locally stabilize microtubule (MT) plus-ends. In addition to the small GTPase Ran, there is evidence that Aurora B kinase might also generate a spatial cue around chromosomes but direct proof for this is still lacking. Here, we find that the Aurora B substrate MCAK localizes to MT plus-ends throughout the mitotic spindle, but its accumulation is strongly reduced on MT plus-ends near chromatin, suggesting that a signal emanating from chromosomes negatively regulates MCAK plus-end binding. Indeed, we show that Aurora B is the kinase responsible for producing this chromosome-derived signal. These results are the first to visualize spatially restricted Aurora B kinase activity around chromosomes on an endogenous substrate and explain how Aurora B could spatially control the dynamics of non-kinetochore MTs during spindle assembly

    The chromosomal passenger complex: guiding Aurora-B through mitosis

    Get PDF
    During mitosis, the chromosomal passenger complex (CPC) orchestrates highly different processes, such as chromosome alignment, histone modification, and cytokinesis. Proper and timely localization of this complex is the key to precise control over the enzymatic core of the CPC, the Aurora-B kinase. We discuss the molecular mechanisms by which the CPC members direct the dynamic localization of the complex throughout cell division. Also, we summarize posttranslational modifications that occur on the CPC and discuss their roles in regulating localization and function of this mitotic complex

    A Complex of Kif18b and MCAK Promotes Microtubule Depolymerization and Is Negatively Regulated by Aurora Kinases

    Get PDF
    SummaryIntroductionSpindle assembly requires tight control of microtubule (MT) dynamics. This is dependent on a variety of MT binding proteins and their upstream regulators. The Aurora kinases have several well-described functions during cell division, but it remains unclear whether they control global spindle microtubule dynamics.ResultsHere, we find that simultaneous inhibition of Aurora A and B results in a dramatic decrease in spindle MT stability, and we identify the uncharacterized kinesin-8 Kif18b as a mediator of this effect. In interphase, Kif18b is nuclear, but upon nuclear envelope breakdown, Kif18b binds to astral MT plus ends through an interaction with EB1. Surprisingly, Kif18b also binds to the kinesin-13 motor MCAK, and this interaction is required for robust MT depolymerization. Furthermore, the Kif18b-MCAK interaction is negatively regulated by Aurora kinases through phosphorylation of MCAK, indicating that Aurora kinases regulate MT plus-end stability in mitosis through control of Kif18b-MCAK complex formation.ConclusionTogether, these results uncover a novel role for Aurora kinases in regulating spindle MT dynamics through Kif18b-MCAK and suggest that the Kif18b-MCAK complex constitutes the major MT plus-end depolymerizing activity in mitotic cells

    Kif15 Cooperates with Eg5 to Promote Bipolar Spindle Assembly

    Get PDF
    SummaryBackgroundThe formation of a bipolar spindle is an essential step during cell division. Bipolar spindle assembly is driven by the highly conserved microtubule motor Eg5 (kinesin-5), which can slide antiparallel microtubules apart to drive centrosome separation. However, it is currently unclear whether and how additional motors can contribute to centrosome separation and bipolar spindle formation.ResultsWe have developed a novel assay to identify motors involved in spindle bipolarity; via this assay, we identify Kif15/Hklp2 (kinesin-12, hereafter referred to as Kif15). Kif15 is not required for spindle bipolarity in cells with full Eg5 activity but becomes essential when Eg5 is partially inhibited. We show that the primary function of Kif15 is to promote spindle elongation and to ensure maintenance of spindle bipolarity. Nonetheless, ectopic expression of Kif15 can fully reconstitute bipolar spindle assembly in the absence of Eg5 activity, demonstrating that Kif15 can replace all essential functions of Eg5 in bipolar spindle assembly. Importantly, this activity of Kif15 depends on its interaction with the microtubule-associated protein TPX2, indicating that a Kif15-TPX2 complex promotes centrosome separation.ConclusionsThese findings show that, similar to Eg5, Kif15 can drive centrosome separation during bipolar spindle assembly. For this activity, Kif15 requires both its motor domain and its interaction with TPX2. Based on these data, we propose that a complex of Kif15 and TPX2 can crosslink and slide two antiparallel microtubules apart, thereby driving centrosome separation

    Doxorubicin-induced DNA Damage Causes Extensive Ubiquitination of Ribosomal Proteins Associated with a Decrease in Protein Translation

    Get PDF
    Protein posttranslational modifications (PTMs) play a central role in the DNA damage response. In particular, protein phosphorylation and ubiquitination have been shown to be essential in the signaling cascade that coordinates break repair with cell cycle progression. Here, we performed whole-cell quantitative proteomics to identify global changes in protein ubiquitination that are induced by DNA double-strand breaks. In total, we quantified more than 9,400 ubiquitin sites and found that the relative abundance of similar to 10% of these sites was altered in response to DNA double-strand breaks. Interestingly, a large proportion of ribosomal proteins, including those from the 40S as well as the 60S subunit, were ubiquitinated in response to DNA damage. In parallel, we discovered that DNA damage leads to the inhibition of ribosome function. Taken together, these data uncover the ribosome as a major target of the DNA damage response.This work is funded by a TOP-GO grant from the Netherlands Organization for Scientific Research (NWO ZonMW 912100651 to R.H.M., S.M., and V.A.H.). I.G.S. was supported with a postdoctoral fellowship from the Basque Country Government (Spain). We thank Christian Frese and Teck Yew Low for fruitful discussions. We also thank Teck Yew Low for submitting the raw files and annotated spectra to PRIDE. We thank Fabricio Loayza-Puch for his technical help with the sucrose gradients

    The impact of monosomies, trisomies and segmental aneuploidies on chromosomal stability

    Get PDF
    Aneuploidy and chromosomal instability are both commonly found in cancer. Chromosomal instability leads to karyotype heterogeneity in tumors and is associated with therapy resistance, metastasis and poor prognosis. It has been hypothesized that aneuploidy per se is sufficient to drive CIN, however due to limited models and heterogenous results, it has remained controversial which aspects of aneuploidy can drive CIN. In this study we systematically tested the impact of different types of aneuploidies on the induction of CIN. We generated a plethora of isogenic aneuploid clones harboring whole chromosome or segmental aneuploidies in human p53-deficient RPE-1 cells. We observed increased segregation errors in cells harboring trisomies that strongly correlated to the number of gained genes. Strikingly, we found that clones harboring only monosomies do not induce a CIN phenotype. Finally, we found that an initial chromosome breakage event and subsequent fusion can instigate breakage-fusion-bridge cycles. By investigating the impact of monosomies, trisomies and segmental aneuploidies on chromosomal instability we further deciphered the complex relationship between aneuploidy and CIN

    Expression of the Serpin Serine Protease Inhibitor 6 Protects Dendritic Cells from Cytotoxic T Lymphocyte–Induced Apoptosis: Differential Modulation by T Helper Type 1 and Type 2 Cells

    Get PDF
    Dendritic cells (DCs) play a central role in the immune system as they drive activation of T lymphocytes by cognate interactions. However, as DCs express high levels of major histocompatibility complex class I, this intimate contact may also result in elimination of DCs by activated cytotoxic T lymphocytes (CTLs) and thereby limit induction of immunity. We show here that immature DCs are indeed susceptible to CTL-induced killing, but become resistant upon maturation with anti-CD40 or lipopolysaccharide. Protection is achieved by expression of serine protease inhibitor (SPI)-6, a member of the serpin family that specifically inactivates granzyme B and thereby blocks CTL-induced apoptosis. Anti-CD40 and LPS-induced SPI-6 expression is sustained for long periods of time, suggesting a role for SPI-6 in the longevity of DCs. Importantly, T helper 1 cells, which mature DCs and boost CTL immunity, induce SPI-6 expression and subsequent DC resistance. In contrast, T helper 2 cells neither induce SPI-6 nor convey protection, despite the fact that they trigger DC maturation with comparable efficiency. Our data identify SPI-6 as a novel marker for DC function, which protects DCs against CTL-induced apoptosis
    • 

    corecore