199 research outputs found

    Reasonable number of issuing original bill of lading

    Get PDF

    In-Situ Fabrication of aligned equxiaed Materials by High Magnetic Field during directional solidification

    No full text
    International audienceThe application of a high magnetic field was capable of inducing the formation of aligned equiaxed grains during directional solidification. The alignment and refinement of equiaxed grains were enhanced as the magnetic field intensity increased. Further, the thermoelectric power difference at the liquid/solid interface in four alloys was measured in-situ during directional solidification. The formation of aligned equiaxed grains under the magnetic field should be attributed to the combined action of thermoelectric magnetic force and magnetization force

    Etude de l'effect thermoélectrique magnétique en solidification directionnelle d'alliages Al-Cu.

    Get PDF
    Nous étudions l'effet thermo-électrique et les phénomènes qui en résultent, forces et les courants thermoélectriques (TEC) sous l'action d'un champ magnétique externe imposé lors de la solidification d'alliages métalliques. Nous avons utilisé des simulations numériques, des observations directes et des examens de laboratoire. L'interaction entre les courants thermo-électriques et le champ magnétique externe lors de la solidification se produit des forces électromagnétiques et donc un écoulement du métal liquide. Le résultat est nommé effet magnétique thermoélectrique (TEME). Les formulations de TEC, les forces et les équations gouvernant les écoulements TEM sont donnés. Afin de mieux prouver l'existence de la TEME, des expériences par méthode d'imagerie à rayons X menées au synchrtron ont été utilisées pour observer in-situ et en temps réel l'action directe des forces et les mouvements TEM pendant la solidification directionnelle des alliages Al-Cu. Nous avons montré la cohérence raisonnable entre les calculs analytiques et des simulations numériques qui ont exécuté avec les mêmes conditions de traitement. En outre, la capacité des écoulements thermo-électriques à influer sur la microstructure lors de la solidification directionnelle sont expérimentalement évaluées dans les autres cas en réalité. La solidification directionnelle d'une seule phase de formation des alliages Al-Cu sous divers champs magnétiques montre que les écoulements TEM sont capables de modifier la forme de l'interface liquide-solide conduisant à des morphologies différentes. L'effet le plus intense se produit dans différents champs magnétiques pour différentes morphologies, en effet, le champ magnétique élevé est nécessaire pour la morphologie a une plus petite longueur typique. Ceci est en accord avec le comportement des vitesses de TEM qui varient avec les champs magnétiques imposés ainsi que les différentes échelles de longueur typique. Cette variation est confirmée par des simulations numériques 3D. Nous montrons que les dendrites primaires et à l'avant de la phase eutectique, peuvent être modifiés par les mouvements TEM et les forces de TEM dans le solide pour améliorer la croissance de la phase de Al2Cu facettes primaire pendant la solidification des Al-40wt%Cu hypereutectiques. Le mécanisme de renforcement de la croissance de la phase facettes Al2Cu est confirmé par la transmission électronique observation au microscope, et la raison de la formation de la structure de croissance de couple de Al-26wt% Cu alliages est vérifiée par le test de l'analyse thermique différentielle. Ainsi, nous pouvons affirmer que le champ magnétique élevé facilite la formation de la structure de la croissance de couple pour hypoeutectiques alliages Al-Cu, et favorise la croissance de la phase Al2Cu primaire pour hypereutectiques Al-Cu alliages.We have investigated the thermoelectric magnetic (TEM) forces and flows resulting from the interaction between the internal thermoelectric currents (TEC) and the imposed external magnetic field during solidification. Numerical simulations, direct observations and experimental examinations were undertaken. As the natural phenomenon, TEC was discovered almost 200 years ago, therefore, our introduction begins from then on. It is shown that the interaction between TEC and external magnetic field during solidification in the cont put forth new interesting phenomena in the context of a rising field named Electromagnetic Processing of Materials. After that, it is discussed how the TEC appear and the TEM effect (TEME, referring to both TEM forces and flows) behaves at the liquid-solid interface in directional solidification under external magnetic field. Meanwhile, formulations of TEC, TEM forces and flows are given, and numerical simulations of TEME are performed to visually display the TEM forces and flows. In order to further prove the existence of TEME, in situ synchrotron X-ray imaging method was used to observe the direct resultant of TEM forces and flows during directionally solidifying the Al-Cu alloys. The observations show reasonable consistency with the analytical calculations and numerical simulations performed with the same process conditions. Except confirmation the existence of TEME, its abilities to affect the microstructure during directional solidification are experimentally investigated in the more realistic cases. The single phase forming Al-Cu alloys are directionally solidified under various magnetic fields, which shows that TEM flows are capable to modify the shape of liquid-solid interface, and the most intensive affect occurs under different magnetic fields for different interface morphologies. Indeed, the smaller the typical length of the morphology is the higher the magnetic field is needed. This agrees with the estimating regulation of the velocity of TEM flows changing with magnetic fields for different typical length scales, and is confirmed by 3D numerical simulations. Directional solidification of multiphase forming Al-Cu alloys under various magnetic fields shows that the mushy zone length (distance between the front of primary dendrites and eutectic phases) varies with the magnetic fields, which can be attributed to the redistribution of rejected solutes by TEM flows. In addition, apparent enhanced growth of the primary faceted Al2Cu phase is founded when Al-40wt%Cu alloys are solidified under sufficient high magnetic fields, this should be ascribed to the TEM forces acting on the solid because strains are able to lead the formation of defects and thus benefit to the growth of faceted phase. This is confirmed by comparison of the dislocations in samples solidified without and with a 10T magnetic field via transmission electron microscopy observation. In another aspect, an almost entire couple growth structure is achieved when Al-26wt%Cu alloys are directionally solidified under a 4T magnetic field, which can be explained by the effect of high magnetic field on changing the nucleation temperature and growth velocity of each phase. Moreover, the differential thermal analysis test on the nucleation temperature of both a-Al and eutectic phases verified this explanation. Therefore, we conclude that high magnetic field facilitates the formation of couple growth structure for hypoeutectic Al-Cu alloys, reversely, enhances the growth of primary dendrite for hypereutectic Al-Cu alloys.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF

    MyEcoCost - forming the nucleus of a novel environmental accounting system: vision, prototype and way forward

    Get PDF
    The innovative software system "myEcoCost" enables to gather and communicate resource and environmental data for products and services in global value chains. The system has been developed in the consortium of the European research project myEcoCost and forms a basis of a new, highly automated environmental accounting system für companies and consumers. The prototype of the system, linked to financial accounting of companies, was developed and tested in close collaboration with large and small companies. This brochure gives a brief introduction to the vision linked to myEcoCost: a network formed by collaborative environmental accounting nodes collecting environmental data at each step in a product's value chains. It shows why better life cycle data are needed and how myEcoCost addresses and solves this problem. Furthermore, it presents options for a future upscaling of highly automated environmenal accounting for prodcuts and services

    OsTIR1 and OsAFB2 Downregulation via OsmiR393 Overexpression Leads to More Tillers, Early Flowering and Less Tolerance to Salt and Drought in Rice

    Get PDF
    The microRNA miR393 has been shown to play a role in plant development and in the stress response by targeting mRNAs that code for the auxin receptors in Arabidopsis. In this study, we verified that two rice auxin receptor gene homologs (OsTIR1 and OsAFB2) could be targeted by OsmiR393 (Os for Oryza sativa). Two new phenotypes (increased tillers and early flowering) and two previously observed phenotypes (reduced tolerance to salt and drought and hyposensitivity to auxin) were observed in the OsmiR393-overexpressing rice plants. The OsmiR393-overexpressing rice demonstrated hyposensitivity to synthetic auxin-analog treatments. These data indicated that the phenotypes of OsmiR393-overexpressing rice may be caused through hyposensitivity to the auxin signal by reduced expression of two auxin receptor genes (OsTIR1 and OsAFB2). The expression of an auxin transporter (OsAUX1) and a tillering inhibitor (OsTB1) were downregulated by overexpression of OsmiR393, which suggested that a gene chain from OsmiR393 to rice tillering may be from OsTIR1 and OsAFB2 to OsAUX1, which affected the transportation of auxin, then to OsTB1, which finally controlled tillering. The positive phenotypes (increased tillers and early flowering) and negative phenotypes (reduced tolerance to salt and hyposensitivity to auxin) of OsmiR393-overexpressing rice present a dilemma for molecular breeding

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    Sustainable Design Strategy of Cosmetic Packaging in China Based on Life Cycle Assessment

    No full text
    Consumptions of cosmetics present a steady growth trend from 2018 to 2021 in China. While environmental impact generated are becoming prominent issues. Numbers of research on the sustainability of cosmetics are focusing on ingredient choices and production; however, the packaging generates more impact than the ingredient extraction in some specific scenarios, and it should be paid more attention to. The role of packaging deserves deep consideration under the background of a circular economy. This research aims to: (i) figure out the impact hotspot through life cycle assessment (LCA) of representative cosmetic packaging in the Chinese market, (ii) conduct a series of sensitivity analyses to figure out to what extent these potential scenarios influence the environmental performance of the packaging, (iii) obtain the significance of these variables to the sustainable design of the packaging. Finally, a set of sustainable design strategies for cosmetic packaging are proposed for the designer from the aspect of facilitating user reuse and recycling behaviour, material selection, and others

    A novel method to fabricate the aligned columnar dendrite via the diffusion under a strong magnetic field

    No full text
    International audienceEffect of a strong magnetic field on the dendrite growth during the diffusion process in the Al/Cu diffusion couple is investigated experimentally. Results show that the aligned Al2Cu dendrite originating from the Al/Cu interface has formed during the diffusion process under a strong magnetic field. A simple growth model of the columnar dendrite during the diffusion process under a strong magnetic field has been proposed. This may initiate a novel method to fabricate the aligned columnar dendrite via the diffusion under the magnetic field in the case of no temperature gradient. (C) 2015 Elsevier B.V. All rights reserved
    • …
    corecore