7 research outputs found

    Betaine supplementation alleviates corticosterone-induced hepatic cholesterol accumulation through epigenetic modulation of HMGCR and CYP7A1 genes in laying hens

    No full text
    ABSTRACT: Excessive corticosterone (CORT) exposure could cause hepatic cholesterol accumulation in chickens and maternal betaine supplementation could decrease hepatic cholesterol deposition through epigenetic modifications in offspring chickens. Nevertheless, it remains uncertain whether providing betaine to laying hens could protect CORT-induced hepatic cholesterol accumulation via epigenetic mechanisms. This study aimed to examine the effects of dietary betaine on plasma and hepatic cholesterol contents, expression of cholesterol metabolic genes, as well as DNA methylation on their promoters in the liver of laying hens exposed to CORT. A total of 72 laying hens at 130 d of age were randomly divided into 3 groups: control (CON), CORT, and CORT+betaine (CORT+BET) groups. The experiment lasted for 35 d. Chickens in CON and CORT groups were fed a basal diet, whereas the CORT+BET group chickens were fed the basal diet supplemented with 0.1% betaine for 35 d. On d 28 of the experiment, chickens in CORT and CORT+BET groups received daily subcutaneous injections of CORT (4.0 mg/kg body weight), whereas the CON group chickens were injected with an equal volume of solvent for 7 d. The results showed that CORT administration led to a significant increase (P < 0.05) in the contents of cholesterol in plasma and liver, associated with activation (P < 0.05) of sterol regulatory element binding transcription factor 2 (SREBP2), 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), lecithin-cholesterol acyltransferase (LCAT) and low-density lipoprotein receptor (LDLR) genes expression, and inhibition of cholesterol-7-alpha hydroxylase (CYP7A1) and sterol 27-hydroxylase (CYP27A1) genes expression in the liver compared to the CON. In contrast, CORT-induced up-regulation of HMGCR mRNA and protein abundances and downregulation of CYP7A1 mRNA and protein abundances were completely normalized (P < 0.05) by betaine supplementation. Besides, CORT injection led to significant hypomethylation (P < 0.05) on HMGCR promoter and hypermethylation (P < 0.05) on CYP7A1 promoter. Moreover, dietary betaine rescued (P < 0.05) CORT-induced changes in methylation status of HMGCR and CYP7A1 genes promoters. These results indicate that dietary betaine addition protects laying hens from CORT-induced hepatic cholesterol accumulation via epigenetic modulation of HMGCR and CYP7A1 genes

    Mutation of the Rice Narrow leaf1 Gene, Which Encodes a Novel Protein, Affects Vein Patterning and Polar Auxin Transport1[OA]

    No full text
    The size and shape of the plant leaf is an important agronomic trait. To understand the molecular mechanism governing plant leaf shape, we characterized a classic rice (Oryza sativa) dwarf mutant named narrow leaf1 (nal1), which exhibits a characteristic phenotype of narrow leaves. In accordance with reduced leaf blade width, leaves of nal1 contain a decreased number of longitudinal veins. Anatomical investigations revealed that the culms of nal1 also show a defective vascular system, in which the number and distribution pattern of vascular bundles are altered. Map-based cloning and genetic complementation analyses demonstrated that Nal1 encodes a plant-specific protein with unknown biochemical function. We provide evidence showing that Nal1 is richly expressed in vascular tissues and that mutation of this gene leads to significantly reduced polar auxin transport capacity. These results indicate that Nal1 affects polar auxin transport as well as the vascular patterns of rice plants and plays an important role in the control of lateral leaf growth

    Novel dental implant modifications with two-staged double benefits for preventing infection and promoting osseointegration in vivo and in vitro

    No full text
    Peri-implantitis are a major problem causing implant failure these days. Accordingly, anti-infection during the early stage and subsequent promotion of osseointegration are two main key factors to solve this issue. Micro-arc oxidation (MAO) treatment is a way to form an oxidation film on the surface of metallic materials. The method shows good osteogenic properties but weak antibacterial effect. Therefore, we developed combined strategies to combat severe peri-implantitis, which included the use of a novel compound, PD, comprising dendrimers poly(amidoamine) (PAMAM) loading dimethylaminododecyl methacrylate (DMADDM) as well as MAO treatment. Here, we explored the chemical properties of the novel compound PD, and proved that this compound was successfully synthesized, with the loading efficiency and encapsulation efficiency of 23.91% and 31.42%, respectively. We further report the two-stage double benefits capability of PD + MAO: (1) in the first stage, PD + MAO could decrease the adherence and development of biofilms by releasing DMADDM in the highly infected first stage after implant surgery both in vitro and in vivo; (2) in the second stage, PD + MAO indicated mighty anti-infection and osteoconductive characteristics in a rat model of peri-implantitis in vivo. This study first reports the two-staged, double benefits of PD + MAO, and demonstrates its potential in clinical applications for inhibiting peri-implantitis, especially in patients with severe infection risk
    corecore