31 research outputs found

    Munc18b is an essential gene in mice whose expression is limiting for secretion by airway epithelial and mast cells

    Get PDF
    Airway mucin secretion and MC (mast cell) degranulation must be tightly controlled for homoeostasis of the lungs and immune system respectively. We found the exocytic protein Munc18b to be highly expressed in mouse airway epithelial cells and MCs, and localized to the apical pole of airway secretory cells. To address its functions, we created a mouse with a severely hypomorphic Munc18b allele such that protein expression in heterozygotes was reduced by∼50%. Homozygous mutant mice were not viable, but heterozygotes showed a ∼50% reduction in stimulated release of mucin from epithelial cells and granule contents from MCs. The defect in MCs affected only regulated secretion and not constitutive or transporter-mediated secretion. The severity of passive cutaneous anaphylaxiswas also reduced by ∼50%, showing that reduction of Munc18b expression results in an attenuation of physiological responses dependent on MC degranulation. The Munc18b promoter is controlled by INR (initiator), Sp1 (specificity protein 1), Ets, CRE (cAMP-response element), GRE (glucocorticoid-response element), GATA and E-box elements in airway epithelial cells; however, protein levels did not change during mucous metaplasia induced by allergic inflammation. Taken together, the results of the present study identifyMunc18b as an essential gene that is a limiting component of the exocytic machinery of epithelial cells and MCs

    SNAP23 Is Selectively Expressed in Airway Secretory Cells and Mediates Baseline and Stimulated Mucin Secretion

    Get PDF
    Airway mucin secretion is important pathophysiologically and as a model of polarized epithelial regulated exocytosis. We find the trafficking protein, SNAP23 (23-kDa paralogue of synaptosome-associated protein of 25 kDa), selectively expressed in secretory cells compared with ciliated and basal cells of airway epithelium by immunohistochemistry and FACS, suggesting that SNAP23 functions in regulated but not constitutive epithelial secretion. Heterozygous SNAP23 deletant mutant mice show spontaneous accumulation of intracellular mucin, indicating a defect in baseline secretion. However mucins are released from perfused tracheas of mutant and wild-type (WT) mice at the same rate, suggesting that increased intracellular stores balance reduced release efficiency to yield a fully compensated baseline steady state. In contrast, acute stimulated release of intracellular mucin from mutant mice is impaired whether measured by a static imaging assay 5 min after exposure to the secretagogue ATP or by kinetic analysis of mucins released from perfused tracheas during the first 10 min of ATP exposure. Together, these data indicate that increased intracellular stores cannot fully compensate for the defect in release efficiency during intense stimulation. The lungs of mutant mice develop normally and clear bacteria and instilled polystyrene beads comparable to WT mice, consistent with these functions depending on baseline secretion that is fully compensated

    SNAP23 is selectively expressed in airway secretory cells and mediates baseline and stimulated mucin secretion

    Get PDF
    Airway mucin secretion is important pathophysiologically and as a model of polarized epithelial regulated exocytosis. We find the trafficking protein, SNAP23 (23-kDa paralogue of synaptosome-associated protein of 25 kDa), selectively expressed in secretory cells compared with ciliated and basal cells of airway epithelium by immunohistochemistry and FACS, suggesting that SNAP23 functions in regulated but not constitutive epithelial secretion. Heterozygous SNAP23 deletant mutant mice show spontaneous accumulation of intracellular mucin, indicating a defect in baseline secretion. However mucins are released from perfused tracheas of mutant and wild-type (WT) mice at the same rate, suggesting that increased intracellular stores balance reduced release efficiency to yield a fully compensated baseline steady state. In contrast, acute stimulated release of intracellular mucin from mutant mice is impaired whether measured by a static imaging assay 5 min after exposure to the secretagogue ATP or by kinetic analysis of mucins released from perfused tracheas during the first 10 min of ATP exposure. Together, these data indicate that increased intracellular stores cannot fully compensate for the defect in release efficiency during intense stimulation. The lungs of mutant mice develop normally and clear bacteria and instilled polystyrene beads comparable to WT mice, consistent with these functions depending on baseline secretion that is fully compensated

    Driving forces of nitrogen use efficiency in Chinese croplands on county scale

    No full text
    Nitrogen use efficiency (NUE, defined as the fraction of N input harvested as product) is an important indicator to understand nitrogen use and losses in croplands as an element of determining sustainable food production. China, as the country with the largest amount of nitrogen fertilizer use globally, research into NUE consistently finds it to be much lower than that in developed countries. Understanding the driving forces of the underlying causes of this low NUE is thus crucial to improve nitrogen use and reduce losses in China. Here we applied the CHANS model to estimate cropland NUE for over 2800 counties in China for the year 2017. Results showed that in most counties NUE ranged between 20% and 40%, while an NUE >50% was mainly found in Northeastern China, likely as a result of large-scale, modern agriculture operations. The source of N input and crop types significantly affected NUE in our assessment. Nitrogen deposition, straw recycling, and biological nitrogen fixation (BNF) could improve NUE, while chemical nitrogen fertilizer and manure inputs reduce NUE. Grain crops have a much higher NUE compared to vegetables, which are often over-fertilized. Moreover, NUE in Southern China is strongly influenced by natural factors such as temperature and precipitation. Specifically, NUE in the Yangtze River Delta (eastern coastal region of China) is associated with socio-economic factors including GDP and the degree of urbanization, while in North-central China, NUE is mainly determined by nitrogen input sources. These examples illustrate that approaches aiming at improving NUE need to be location-specific with consideration of multiple natural and socioeconomic factors

    Age is associated with prognosis in serous ovarian carcinoma

    No full text
    Abstract Purpose The survival duration of elderly patients with epithelial ovarian carcinoma is shorter than that of their younger counterparts. This variation in survival duration is likely attributed to differences in the distribution of histological type or grade, International Federation of Gynecology and Obstetrics (FIGO) staging, and undertreatment, but this observation remains controversial. This study aimed to investigate the biological factors other than selection bias associated with the decreased survival of elderly patients with ovarian carcinoma. Methods A total of 314 serous ovarian cancer (SOC) patients from Jiangsu Institute of Cancer Research (JICR, PRC) between 2002 and 2012 were retrospectively analyzed, and 774 cases from MD Anderson Cancer Center (MDACC, USA) between 1992 and 2012 were used for validation. The 8-hydroxy-2′-deoxyguanine (8-OHdG) concentration in leukocyte DNA was evaluated by using commercially available enzyme-linked immunosorbent assay kits, and tissue expression was assayed through immunohistochemistry. The associations between survival durations and covariates were assessed by using a Cox proportional hazards model and by conducting a log-rank test. Results Advanced age ≥ 65 years was correlated with high histological grade (p = 0.02), performance status (p = 0.03), primary treatment (p = 0.00), and suboptimal surgery outcome (p = 0.04) in SOC patients from JICR. Age, FIGO stage, histological grade, and optimal surgery were independently associated with the progression-free survival (PFS; p = 0.03, p = 0.03, p = 0.02, and p = 0.04, respectively) and overall survival (OS; p = 0.02, p = 0.04, p = 0.02, and p = 0.02, respectively) of the SOC patients from JICR. The 8-OHdG concentration in the leukocyte DNA was higher in the elderly patients than in the younger cases. The high 8-OHdG concentration in the leukocyte DNA indicated poorer median OS (30.0 months, confidence interval [CI]: 23.5–36.5 vs. 42.8 months, [CI] 38.3–47.2) and PFS (14.6 months, [CI] 11.9–17.2 vs. 18.9 months, [CI] 14.4–23.4) than those of their corresponding counterparts in the SOC patients who achieved a clinical complete response from primary treatment. Conclusions Compared with younger cases, elderly patients with SOC were commonly characterized by high tumor grade, poor performance status, and undertreatment. High 8-OHdG concentration in leukocyte DNA was associated with advanced age and poor prognosis in SOC patients

    lncRNA GAS6-AS1 inhibits progression and glucose metabolism reprogramming in LUAD via repressing E2F1-mediated transcription of GLUT1

    No full text
    Glucose metabolism reprogramming is one of the hallmarks of cancer cells, although functional and regulatory mechanisms of long noncoding RNA (lncRNA) in the contribution of glucose metabolism in lung adenocarcinoma (LUAD) remain incompletely understood. The aim of this study was to uncover the role of GAS6-AS1 in the regulation of progression and glucose metabolism in LUAD. We discovered that overexpression of GAS6-AS1 suppressed tumor progression of LUAD both in vitro and in vivo. Metabolism-related assays revealed that GAS6-AS1 inhibited glucose metabolism reprogramming. Mechanically, GAS6-AS1 was found to repress the expression of glucose transporter GLUT1, a key regulator of glucose metabolism. Ectopic expression of GLUT1 restored the inhibition effect of GAS6-AS1 on cancer progression and glucose metabolism reprogramming. Further investigation identified that GAS6-AS1 directly interacted with transcription factor E2F1 and suppressed E2F1-mediated transcription of GLUT1, and GAS6-AS1 was downregulated in LUAD tissues and correlated with clinicopathological characteristics and survival of patients. Taken together, our results identified GAS6-AS1 as a novel tumor suppressor in LUAD and unraveled its underlying molecular mechanism in reprogramming glucose metabolism. GAS6-AS1 potentially may serve as a prognostic marker and therapeutic target in LUAD

    BARX2/FOXA1/HK2 axis promotes lung adenocarcinoma progression and energy metabolism reprogramming

    No full text
    Background: Metabolic reprogramming is an emerging cancer feature that has recently drawn special attention since it promotes tumor cell growth and proliferation. However, the mechanism of the Warburg effect is still largely unknown. This research aimed to reveal the effects of BarH-like homeobox 2 (BARX2) in regulating tumor progression and glucose metabolism in lung adenocarcinoma (LUAD).Methods: Expression of BARX2 was measured by quantitative real-time polymerase chain reaction (qRTPCR) in LUAD cell line and tissues, and the tumor-promoting function of BARX2 in LUAD cells was detected in vitro and in vivo xenograft models. The metabolic effects of BARX2 were examined by detecting glucose uptake, the production levels of lactate and pyruvate, and the extracellular acidification rate (ECAR). Chromatin immunoprecipitation (ChIP) assay and luciferase reporter gene assay were used to identify the underlying molecular mechanism of BARX2 regulation of HK2. Further studies showed that transcription factor FOXA1 directly interacts with BARX2 and promotes the transcriptional activity of BARX2.Results: BARX2 was remarkably up-regulated in LUAD tissues and positively linked to advanced clinical stage and poor prognosis. In vitro and in vivo data indicated ectopic expression of BARX2 enhanced cell proliferation and tumorigenesis, whereas BARX2 knockdown suppressed these effects. Metabolic-related experiments showed BARX2 promoted the reprogramming of glucose metabolism. Mechanistically, the BARX2/FOXA1/HK2 axis promoted LUAD progression and energy metabolism reprogramming.Conclusions: In summary, our research first defined BARX2 as a tumor-promoting factor in LUAD andthat it may act as a novel prognostic biomarker and new therapeutic target for the disease.info:eu-repo/semantics/publishedVersio
    corecore