6 research outputs found

    Large chemokine binding spectrum of human and mouse atypical chemokine receptor GPR182 (ACKR5)

    Get PDF
    Atypical chemokine receptors (ACKRs) play pivotal roles in immune regulation by binding chemokines and regulating their spatial distribution without inducing G-protein activation. Recently, GPR182, provisionally named ACKR5, was identified as a novel ACKR expressed in microvascular and lymphatic endothelial cells, with functions in hematopoietic stem cell homeostasis. Here, we comprehensively investigated the chemokine binding profile of human and mouse GPR182. Competitive binding assays using flow cytometry revealed that besides CXCL10, CXCL12 and CXCL13, also human and mouse CXCL11, CXCL14 and CCL25, as well as human CCL1, CCL11, CCL19, CCL26, XCL1 and mouse CCL22, CCL24, CCL27 and CCL28 bind with an affinity of less than 100 nM to GPR182. In line with the binding affinity observed in vitro, elevated serum levels of CCL22, CCL24, CCL25, and CCL27 were observed in GPR182-deficient mice, underscoring the role of GPR182 in chemokine scavenging. These data show a broader chemokine binding repertoire of GPR182 than previously reported and they will be important for future work exploring the physiological and pathophysiological roles of GPR182, which we propose to be renamed atypical chemokine receptor 5 (ACKR5)

    20-HETE promotes glucose-stimulated insulin secretion in an autocrine manner through FFAR1

    No full text
    The long-chain fatty acid receptor FFAR1 is highly expressed in pancreatic β-cells. Synthetic FFAR1 agonists can be used as antidiabetic drugs to promote glucose-stimulated insulin secretion (GSIS). However, the physiological role of FFAR1 in β-cells remains poorly understood. Here we show that 20-HETE activates FFAR1 and promotes GSIS via FFAR1 with higher potency and efficacy than dietary fatty acids such as palmitic, linoleic, and α-linolenic acid. Murine and human β-cells produce 20-HETE, and the ω-hydroxylase-mediated formation and release of 20-HETE is strongly stimulated by glucose. Pharmacological inhibition of 20-HETE formation and blockade of FFAR1 in islets inhibits GSIS. In islets from type-2 diabetic humans and mice, glucose-stimulated 20-HETE formation and 20-HETE-dependent stimulation of GSIS are strongly reduced. We show that 20-HETE is an FFAR1 agonist, which functions as an autocrine positive feed-forward regulator of GSIS, and that a reduced glucose-induced 20-HETE formation contributes to inefficient GSIS in type-2 diabetes

    Alpha cell-specific Men1 ablation triggers the transdifferentiation of glucagon-expressing cells and insulinoma development

    No full text
    BACKGROUND & AIMS: The tumor suppressor menin is recognized as a key regulator of pancreatic islet development, proliferation, and beta-cell function, whereas its role in alpha cells remains poorly understood. The purpose of the current study was to address this issue in relation to islet tumor histogenesis. METHODS: We generated alpha cell-specific Men1 mutant mice with Cre/loxP technology and carried out analyses of pancreatic lesions developed in the mutant mice during aging. RESULTS: We showed that, despite the alpha-cell specificity of the GluCre transgene, both glucagonomas and a large amount of insulinomas developed in mutant mice older than 6 months, accompanied by mixed islet tumors. Interestingly, the cells sharing characteristics of both alpha and beta cells were identified shortly after the appearance of menin-deficient alpha cells but well before the tumor onset. Using a genetic cell lineage tracing analysis, we demonstrated that insulinoma cells were directly derived from transdifferentiating glucagon-expressing cells. Furthermore, our data indicated that the expression of Pdx1, MafA, Pax4, and Ngn3 did not seem to be required for the initiation of this transdifferentiation. CONCLUSIONS: Our work shows cell transdifferentiation as a novel mechanism involved in islet tumor development and provides evidence showing that menin regulates the plasticity of differentiated pancreatic alpha cells in vivo, shedding new light on the mechanisms of islet tumorigenesis

    Endothelial FAT1 inhibits angiogenesis by controlling YAP/TAZ protein degradation via E3 ligase MIB2

    Get PDF
    The authors report that endothelial protocadherin FAT1 inhibits endothelial proliferation and angiogenesis by promoting degradation of the transcriptional cofactors YAP and TAZ by direct interaction with the E3 ubiquitin ligase Mind Bomb-2 (MIB2)

    GPR182 is an endothelium-specific atypical chemokine receptor that maintains hematopoietic stem cell homeostasis

    No full text
    G protein–coupled receptor 182 (GPR182) has been shown to be expressed in endothelial cells; however, its ligand and physiological role has remained elusive. We found GPR182 to be expressed in microvascular and lymphatic endothelial cells of most organs and to bind with nanomolar affinity the chemokines CXCL10, CXCL12, and CXCL13. In contrast to conventional chemokine receptors, binding of chemokines to GPR182 did not induce typical downstream signaling processes, including Gq- and Gi-mediated signaling or β-arrestin recruitment. GPR182 showed relatively high constitutive activity in regard to β-arrestin recruitment and rapidly internalized in a ligand-independent manner. In constitutive GPR182-deficient mice, as well as after induced endothelium-specific loss of GPR182, we found significant increases in the plasma levels of CXCL10, CXCL12, and CXCL13. Global and induced endothelium-specific GPR182-deficient mice showed a significant decrease in hematopoietic stem cells in the bone marrow as well as increased colony-forming units of hematopoietic progenitors in the blood and the spleen. Our data show that GPR182 is a new atypical chemokine receptor for CXCL10, CXCL12, and CXCL13, which is involved in the regulation of hematopoietic stem cell homeostasis.ISSN:0027-8424ISSN:1091-649
    corecore