40 research outputs found

    Edge of Chaos and Genesis of Turbulence

    Full text link
    The edge of chaos is analyzed in a spatially extended system, modeled by the regularized long-wave equation, prior to the transition to permanent spatiotemporal chaos. In the presence of coexisting attractors, a chaotic saddle is born at the basin boundary due to a smooth-fractal metamorphosis. As a control parameter is varied, the chaotic transient evolves to well-developed transient turbulence via a cascade of fractal-fractal metamorphoses. The edge state responsible for the edge of chaos and the genesis of turbulence is an unstable travelling wave in the laboratory frame, corresponding to a saddle point lying at the basin boundary in the Fourier space

    On-off intermittency and amplitude-phase synchronization in Keplerian shear flows

    Full text link
    We study the development of coherent structures in local simulations of the magnetorotational instability in accretion discs in regimes of on-off intermittency. In a previous paper [Chian et al., Phys. Rev. Lett. 104, 254102 (2010)], we have shown that the laminar and bursty states due to the on-off spatiotemporal intermittency in a one-dimensional model of nonlinear waves correspond, respectively, to nonattracting coherent structures with higher and lower degrees of amplitude-phase synchronization. In this paper we extend these results to a three-dimensional model of magnetized Keplerian shear flows. Keeping the kinetic Reynolds number and the magnetic Prandtl number fixed, we investigate two different intermittent regimes by varying the plasma beta parameter. The first regime is characterized by turbulent patterns interrupted by the recurrent emergence of a large-scale coherent structure known as two-channel flow, where the state of the system can be described by a single Fourier mode. The second regime is dominated by the turbulence with sporadic emergence of coherent structures with shapes that are reminiscent of a perturbed channel flow. By computing the Fourier power and phase spectral entropies in three-dimensions, we show that the large-scale coherent structures are characterized by a high degree of amplitude-phase synchronization.Comment: 17 pages, 10 figure

    Self-modulation of nonlinear waves in a weakly magnetized relativistic electron-positron plasma with temperature

    Get PDF
    We develop a nonlinear theory for self-modulation of a circularly polarized electromagnetic wave in a relativistic hot weakly magnetized electron-positron plasma. The case of parallel propagation along an ambient magnetic field is considered. A nonlinear Schrodinger equation is derived for the complex wave amplitude of a self-modulated wave packet. We show that the maximum growth rate of the modulational instability decreases as the temperature of the pair plasma increases. Depending on the initial conditions, the unstable wave envelope can evolve nonlinearly to either periodic wave trains or solitary waves. This theory has application to high-energy astrophysics and high-power laser physics.CONICyTFONDECyT 1110135 1080658Brazilian agency CNPqBrazilian agency FAPESPMarie Curie International Incoming Fellowshiphospitality of Paris ObservatoryInstitute for Fusion Studie

    Transition to chaos in a reduced-order model of a shear layer

    Full text link
    The present work studies the non-linear dynamics of a shear layer, driven by a body force and confined between parallel walls, a simplified setting to study transitional and turbulent shear layers. It was introduced by Nogueira \& Cavalieri (J. Fluid Mech. 907, A32, 2021), and is here studied using a reduced-order model based on a Galerkin projection of the Navier-Stokes system. By considering a confined shear layer with free-slip boundary conditions on the walls, periodic boundary conditions in streamwise and spanwise directions may be used, simplifying the system and enabling the use of methods of dynamical systems theory. A basis of eight modes is used in the Galerkin projection, representing the mean flow, Kelvin-Helmholtz vortices, rolls, streaks and oblique waves, structures observed in the cited work, and also present in shear layers and jets. A dynamical system is obtained, and its transition to chaos is studied. Increasing Reynolds number ReRe leads to pitchfork and Hopf bifurcations, and the latter leads to a limit cycle with amplitude modulation of vortices, as in the DNS by Nogueira \& Cavalieri. Further increase of ReRe leads to the appearance of a chaotic saddle, followed by the emergence of quasi-periodic and chaotic attractors. The chaotic attractors suffer a merging crisis for higher ReRe, leading to chaotic dynamics with amplitude modulation and phase jumps of vortices. This is reminiscent of observations of coherent structures in turbulent jets, suggesting that the model represents dynamics consistent with features of shear layers and jets.Comment: 28 pages, 18 figure

    A novel type of intermittency in a nonlinear dynamo in a compressible flow

    Full text link
    The transition to intermittent mean--field dynamos is studied using numerical simulations of isotropic magnetohydrodynamic turbulence driven by a helical flow. The low-Prandtl number regime is investigated by keeping the kinematic viscosity fixed while the magnetic diffusivity is varied. Just below the critical parameter value for the onset of dynamo action, a transient mean--field with low magnetic energy is observed. After the transition to a sustained dynamo, the system is shown to evolve through different types of intermittency until a large--scale coherent field with small--scale turbulent fluctuations is formed. Prior to this coherent field stage, a new type of intermittency is detected, where the magnetic field randomly alternates between phases of coherent and incoherent large--scale spatial structures. The relevance of these findings to the understanding of the physics of mean--field dynamo and the physical mechanisms behind intermittent behavior observed in stellar magnetic field variability are discussed.Comment: 19 pages, 13 figure

    Chaotic saddles in nonlinear modulational interactions in a plasma

    Full text link
    A nonlinear model of modulational processes in the subsonic regime involving a linearly unstable wave and two linearly damped waves with different damping rates in a plasma is studied numerically. We compute the maximum Lyapunov exponent as a function of the damping rates in a two-parameter space, and identify shrimp-shaped self-similar structures in the parameter space. By varying the damping rate of the low-frequency wave, we construct bifurcation diagrams and focus on a saddle-node bifurcation and an interior crisis associated with a periodic window. We detect chaotic saddles and their stable and unstable manifolds, and demonstrate how the connection between two chaotic saddles via coupling unstable periodic orbits can result in a crisis-induced intermittency. The relevance of this work for the understanding of modulational processes observed in plasmas and fluids is discussed.Comment: Physics of Plasmas, in pres

    Lagrangian chaos in an ABC--forced nonlinear dynamo

    Full text link
    The Lagrangian properties of the velocity field in a magnetized fluid are studied using three-dimensional simulations of a helical magnetohydrodynamic dynamo. We compute the attracting and repelling Lagrangian coherent structures, which are dynamic lines and surfaces in the velocity field that delineate particle transport in flows with chaotic streamlines and act as transport barriers. Two dynamo regimes are explored, one with a robust coherent mean magnetic field and one with intermittent bursts of magnetic energy. The Lagrangian coherent structures and the statistics of finite--time Lyapunov exponents indicate that the stirring/mixing properties of the velocity field decay as a linear function of the magnetic energy. The relevance of this study for the solar dynamo problem is discussed

    Solar and Interplanetary Turbulence: Lagrangian Coherent Structures

    Get PDF
    Talk delivered in 22nd EGU General Assembly, held online 4-8 May, 2020, id.4289, https://meetingorganizer.copernicus.org/EGU2020/EGU2020-4289.html.-- https://www.egu2020.eu/The dynamics of solar and interplanetary plasmas is governed by coherent structures such as current sheets and magnetic flux ropes which are responsible for the genesis of intermittent turbulence via magnetic reconnections in solar supergranular junctions, solar coronal loops, the shock-sheath region of an interplanetary coronal mass ejection, and the interface region of two interplanetary magnetic flux ropes. Lagrangian coherent structures provide a new powerful technique to detect time- or space-dependent transport barriers, and objective (i.e., frame invariant) kinematic and magnetic vortices in space plasma turbulence. We discuss the basic concepts of Lagrangian coherent structures in plasmas based on the computation of the finite-time Lyapunov exponent, the Lagrangian averaged vorticity deviation and the integrated averaged current deviation, as well as their applications to numerical simulations of MHD turbulence and space and ground observations.With funding from the Spanish government through the ‘Severo Ochoa Centre of Excellence’ accreditation SEV-2017-070
    corecore