13 research outputs found

    Model for the Scaling of Stresses and Fluctuations in Flows near Jamming

    Get PDF
    We probe flows of soft, viscous spheres near the jamming point, which acts as a critical point for static soft spheres. Starting from energy considerations, we find nontrivial scaling of velocity fluctuations with strain rate. Combining this scaling with insights from jamming, we arrive at an analytical model that predicts four distinct regimes of flow, each characterized by rational-valued scaling exponents. Both the number of regimes and values of the exponents depart from prior results. We validate predictions of the model with simulations.Comment: 4 pages, 5 figures (revised text and one new figure). To appear in Phys. Rev. Let

    The cohesive band model: A cohesive surface formulation with stress triaxiality

    Get PDF
    In the cohesive surface model cohesive tractions are transmitted across a two-dimensional surface, which is embedded in a three-dimensional continuum. The relevant kinematic quantities are the local crack opening displacement and the crack sliding displacement, but there is no kinematic quantity that represents the stretching of the fracture plane. As a consequence, in-plane stresses are absent, and fracture phenomena as splitting cracks in concrete and masonry, or crazing in polymers, which are governed by stress triaxiality, cannot be represented properly. In this paper we extend the cohesive surface model to include in-plane kinematic quantities. Since the full strain tensor is now available, a three-dimensional stress state can be computed in a straightforward manner. The cohesive band model is regarded as a subgrid scale fracture model, which has a small, yet finite thickness at the subgrid scale, but can be considered as having a zero thickness in the discretisation method that is used at the macroscopic scale. The standard cohesive surface formulation is obtained when the cohesive band width goes to zero. In principle, any discretisation method that can capture a discontinuity can be used, but partition-of-unity based finite element methods and isogeometric finite element analysis seem to have an advantage since they can naturally incorporate the continuum mechanics. When using interface finite elements, traction oscillations that can occur prior to the opening of a cohesive crack, persist for the cohesive band model. Example calculations show that Poisson contraction influences the results, since there is a coupling between the crack opening and the in-plane normal strain in the cohesive band. This coupling holds promise for capturing a variety of fracture phenomena, such as delamination buckling and splitting cracks, that are difficult, if not impossible, to describe within a conventional cohesive surface model. © 2013 Springer Science+Business Media Dordrecht

    An Isogeometric Analysis Approach to Fluid Flow in a Fractured Porous Medium

    No full text
    In this paper we present an isogeometric approach for calculating fluid flow in a fractured porous medium. The fluid flow away from the crack is modelled using Darcy's relation. A similar relation is assumed for the fluid flow inside the crack. Here, the higher porosity is modelled using a different permeability. An isogeometric analysis approach with B-splines is used for both the parametrisation of the geometry and the discretisation of the weak form of the equilibrium equations. The crack is described in a discrete manner by using the continuity reduction property of the B-splines. To ease the integration into existing finite element technology, a finite element data structure based on B'ezier extraction is used. The B'ezier extraction operator decomposes the B-spline based elements to B'ezier elements which bear a close resemblance to Lagrange elements. The global smoothness of B-splines is localized to an element level similar to finite element analysis, making isogeometric analysis compatible with existing finite element codes while still exploiting the excellent properties of the spline basis functions. The results of the new model are demonstrated in an example in which the fluid flow is considered around a crack in a specimen under mode-I loading

    Mechanics of interfaces and evolving discontinuities

    No full text
    The two main approaches to the modelling of discontinuities are reviewed concisely, followed by a discussion of cohesive models for fracture. Emphasis is put on a novel approach to incorporate triaxiality into cohesive-zone models, and on the representation of cohesive crack models by phase-field models.</p

    Interaction between crack tip advancement and fluid flow in fracturing saturated porous media

    No full text
    We address stepwise crack tip advancement and pressure fluctuations, which have been observed in the field and experimentally in fracturing saturated porous media. Both fracturing due to mechanical loading and pressure driven fracture are considered. After presenting the experimental evidence and the different explanations for the phenomena put forward and mentioning briefly what has been obtained so far by published numerical and analytical methods we propose our explanation based on Biot’s theory. A short presentation of three methods able to simulate the observed phenomena namely the Central Force Model, the Standard Galerkin Finite Element Method SGFEM and extended finite element method XFEM follows. With the Central Force Model it is evidenced that already dry geomaterials break in an intermittent fashion and that the presence of a fluid affects the behavior more or less depending on the loading and boundary conditions. Examples dealing both with hydraulic fracturing and mechanical loading are shown. The conditions needed to reproduce the observed phenomena with FE models at macroscopic level are evidenced. They appear to be the adoption of a crack tip advancement/time step algorithm which interferes the least possible with the three interacting velocities, namely the crack tip advancement velocity on one side, the seepage velocity of the fluid in the domain and from the crack (leak-off), and the fluid velocity within the crack on the other side. Further the crack tip advancement algorithm must allow for reproducing jumps observed in the experiments
    corecore