117 research outputs found

    Ab initio molecular dynamics using density based energy functionals: application to ground state geometries of some small clusters

    Get PDF
    The ground state geometries of some small clusters have been obtained via ab initio molecular dynamical simulations by employing density based energy functionals. The approximate kinetic energy functionals that have been employed are the standard Thomas-Fermi (TTF)(T_{TF}) along with the Weizsacker correction TWT_W and a combination F(Ne)TTF+TWF(N_e)T_{TF} + T_W. It is shown that the functional involving F(Ne)F(N_e) gives superior charge densities and bondlengths over the standard functional. Apart from dimers and trimers of Na, Mg, Al, Li, Si, equilibrium geometries for LinAl,n=1,8Li_nAl, n=1,8 and Al13Al_{13} clusters have also been reported. For all the clusters investigated, the method yields the ground state geometries with the correct symmetries with bondlengths within 5\% when compared with the corresponding results obtained via full orbital based Kohn-Sham method. The method is fast and a promising one to study the ground state geometries of large clusters.Comment: 15 pages, 3 PS figure

    Effect of hydrogen on ground state structures of small silicon clusters

    Full text link
    We present results for ground state structures of small Sin_{n}H (2 \leq \emph{n} \leq 10) clusters using the Car-Parrinello molecular dynamics. In particular, we focus on how the addition of a hydrogen atom affects the ground state geometry, total energy and the first excited electronic level gap of an Sin_{n} cluster. We discuss the nature of bonding of hydrogen in these clusters. We find that hydrogen bonds with two silicon atoms only in Si2_{2}H, Si3_{3}H and Si5_{5}H clusters, while in other clusters (i.e. Si4_{4}H, Si6_{6}H, Si7_{7}H, Si8_{8}H, Si9_{9}H and Si10_{10}H) hydrogen is bonded to only one silicon atom. Also in the case of a compact and closed silicon cluster hydrogen bonds to the cluster from outside. We find that the first excited electronic level gap of Sin_{n} and Sin_{n}H fluctuates as a function of size and this may provide a first principles basis for the short-range potential fluctuations in hydrogenated amorphous silicon. Our results show that the addition of a single hydrogen can cause large changes in the electronic structure of a silicon cluster, though the geometry is not much affected. Our calculation of the lowest energy fragmentation products of Sin_{n}H clusters shows that hydrogen is easily removed from Sin_{n}H clusters.Comment: one latex file named script.tex including table and figure caption. Six postscript figure files. figure_1a.ps and figure_1b.ps are files representing Fig. 1 in the main tex

    Out of Equilibrium Thermal Field Theories - Finite Time after Switching on the Interaction - Wigner Transforms of Projected Functions

    Get PDF
    We study out of equilibrium thermal field theories with switching on the interaction occurring at finite time using the Wigner transforms (in relative space-time) of two-point functions. For two-point functions we define the concept of projected function: it is zero if any of times refers to the time before switching on the interaction, otherwise it depends only on the relative coordinates. This definition includes bare propagators, one-loop self-energies, etc. For the infinite-average-time limit of the Wigner transforms of projected functions we define the analyticity assumptions: (1) The function of energy is analytic above (below) the real axis. (2) The function goes to zero as the absolute value of energy approaches infinity in the upper (lower) semiplane. Without use of the gradient expansion, we obtain the convolution product of projected functions. We sum the Schwinger-Dyson series in closed form. In the calculation of the Keldysh component (both, resummed and single self-energy insertion approximation) contributions appear which are not the Wigner transforms of projected functions, signaling the limitations of the method. In the Feynman diagrams there is no explicit energy conservation at vertices, there is an overall energy-smearing factor taking care of the uncertainty relations. The relation between the theories with the Keldysh time path and with the finite time path enables one to rederive the results, such as the cancellation of pinching, collinear, and infrared singularities, hard thermal loop resummation, etc.Comment: 23 pages + 1 figure, Latex, corrected version, improved presentation, version accepted for publication in Phys. Rev.

    Nuclear Clusters as a Probe for Expansion Flow in Heavy Ion Reactions at 10-15AGeV

    Get PDF
    A phase space coalescence description based on the Wigner-function method for cluster formation in relativistic nucleus-nucleus collisions is presented. The momentum distributions of nuclear clusters d,t and He are predicted for central Au(11.6AGeV)Au and Si(14.6AGeV)Si reactions in the framework of the RQMD transport approach. Transverse expansion leads to a strong shoulder-arm shape and different inverse slope parameters in the transverse spectra of nuclear clusters deviating markedly from thermal distributions. A clear ``bounce-off'' event shape is seen: the averaged transverse flow velocities in the reaction plane are for clusters larger than for protons. The cluster yields --particularly at low ptp_t at midrapidities-- and the in-plane (anti)flow of clusters and pions change if suitably strong baryon potential interactions are included. This allows to study the transient pressure at high density via the event shape analysis of nucleons, nucleon clusters and other hadrons.Comment: 38 pages, 9 figures, LaTeX type, eps used, subm. to Phys. Rev.

    Quantum Tunneling in the Wigner Representation

    Get PDF
    Time dependence for barrier penetration is considered in the phase space. An asymptotic phase-space propagator for nonrelativistic scattering on a one - dimensional barrier is constructed. The propagator has a form universal for various initial state preparations and local potential barriers. It is manifestly causal and includes time-lag effects and quantum spreading. Specific features of quantum dynamics which disappear in the standard semi-classical approximation are revealed. The propagator may be applied to calculation of the final momentum and coordinate distributions, for particles transmitted through or reflected from the potential barrier, as well as for elucidating the tunneling time problem.Comment: 18 pages, LATEX, no figure

    Program for expectant and new mothers: a population-based study of participation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Manitoba Healthy Baby Program is aimed at promoting pre- and perinatal health and includes two components: 1) prenatal income supplement; 2) community support programs. The goal of this research was to determine the uptake of these components by target groups.</p> <p>Methods</p> <p>Data on participation in each of the two program components were linked to data on all hospital births in Manitoba between 2004/05 through 2007/08. Descriptive analyses of participation by maternal characteristics were produced. Logistic regression analyses were conducted to identify factors associated with participation in the two programs. Separate regressions were run for two groups of women giving birth during the study period: 1) total population; 2) those receiving provincial income assistance during the prenatal period.</p> <p>Results</p> <p>Almost 30% of women giving birth in Manitoba received the Healthy Baby prenatal income supplement, whereas only 12.6% participated in any community support programs. Over one quarter (26.4%) of pregnant women on income assistance did not apply for and receive the prenatal income supplement, despite all being eligible for it. Furthermore, 77.8% of women on income assistance did not participate in community support programs. Factors associated with both receipt of the prenatal benefit and participation in community support programs included lower SES, receipt of income assistance, obtaining adequate prenatal care, having completed high school and having depressive symptoms. Having more previous births was associated with higher odds of receiving the prenatal benefit, but lower odds of attending community support programs. Being married was associated with lower odds of receiving the prenatal benefit but higher odds of participating in community support programs.</p> <p>Conclusions</p> <p>Although uptake of the Healthy Baby program in Manitoba is greater for women in groups at risk for poorer perinatal outcomes, a substantial number of women eligible for this program are not receiving it; efforts to reach these women should be enhanced.</p

    Low dose cranial irradiation-induced cerebrovascular damage is reversible in mice

    Get PDF
    BACKGROUND: High-dose radiation-induced blood-brain barrier breakdown contributes to acute radiation toxicity syndrome and delayed brain injury, but there are few data on the effects of low dose cranial irradiation. Our goal was to measure blood-brain barrier changes after low (0.1 Gy), moderate (2 Gy) and high (10 Gy) dose irradiation under in vivo and in vitro conditions. METHODOLOGY: Cranial irradiation was performed on 10-day-old and 10-week-old mice. Blood-brain barrier permeability for Evans blue, body weight and number of peripheral mononuclear and circulating endothelial progenitor cells were evaluated 1, 4 and 26 weeks postirradiation. Barrier properties of primary mouse brain endothelial cells co-cultured with glial cells were determined by measurement of resistance and permeability for marker molecules and staining for interendothelial junctions. Endothelial senescence was determined by senescence associated ÎČ-galactosidase staining. PRINCIPLE FINDINGS: Extravasation of Evans blue increased in cerebrum and cerebellum in adult mice 1 week and in infant mice 4 weeks postirradiation at all treatment doses. Head irradiation with 10 Gy decreased body weight. The number of circulating endothelial progenitor cells in blood was decreased 1 day after irradiation with 0.1 and 2 Gy. Increase in the permeability of cultured brain endothelial monolayers for fluorescein and albumin was time- and radiation dose dependent and accompanied by changes in junctional immunostaining for claudin-5, ZO-1 and ÎČ-catenin. The number of cultured brain endothelial and glial cells decreased from third day of postirradiation and senescence in endothelial cells increased at 2 and 10 Gy. CONCLUSION: Not only high but low and moderate doses of cranial irradiation increase permeability of cerebral vessels in mice, but this effect is reversible by 6 months. In-vitro experiments suggest that irradiation changes junctional morphology, decreases cell number and causes senescence in brain endothelial cells

    Computational Improvements to Quantum Wave Packet ab Initio Molecular Dynamics Using a Potential-Adapted, Time-Dependent Deterministic Sampling Technique

    Full text link
    • 

    corecore