729 research outputs found
Linear and planar molecules formed by coupled P donors in silicon
Using the effective mass theory and the multi-valley envelope function
representation, we have developed a theoretical framework for computing the
single-electron electronic structure of several phosphorus donors interacting
in an arbitrary geometrical configuration in silicon taking into account the
valley-orbit coupling. The methodology is applied to three coupled phosphorus
donors, arranged in a linear chain and in a triangle, and to six donors
arranged in a regular hexagon. The results of the simulations evidence that the
valley composition of the single-electron states strongly depends on the
geometry of the dopant molecule and its orientation relative to the
crystallographic axes of silicon. The electron binding energy of the triatomic
linear molecules is larger than that of the diatomic molecule oriented along
the same crystallographic axis, but the energy gap between the ground state and
the first excited state is not significantly different for internuclear
distances from 1.5 to 6.6 nm. Three donor atoms arranged in a triangle geometry
have larger binding energies than a triatomic linear chain of dopants with the
same internuclear distances. The planar donor molecules are characterized by a
strong polarization in favor of the valleys oriented perpendicular to the plane
of the molecule. The polarization increases with number of atoms forming the
planar molecule
Balanced ternary addition using a gated silicon nanowire
We demonstrate the proof of principle for a ternary adder using silicon
metal-on-insulator single electron transistors (SET). Gate dependent rectifying
behavior of a single electron transistor results in a robust three-valued
output as a function of the potential of the SET island. Mapping logical,
ternary inputs to the three gates controlling the potential of the SET island
allows us to perform complex, inherently ternary operations, on a single
transistor
Information hiding and retrieval in Rydberg wave packets using half-cycle pulses
We demonstrate an information hiding and retrieval scheme with the relative
phases between states in a Rydberg wave packet acting as the bits of a data
register. We use a terahertz half-cycle pulse (HCP) to transfer phase-encoded
information from an optically accessible angular momentum manifold to another
manifold which is not directly accessed by our laser pulses, effectively hiding
the information from our optical interferometric measurement techniques. A
subsequent HCP acting on these wave packets reintroduces the information back
into the optically accessible data register manifold which can then be `read'
out.Comment: 4 pages, 4 figure
Observation of resonance trapping in an open microwave cavity
The coupling of a quantum mechanical system to open decay channels has been
theoretically studied in numerous works, mainly in the context of nuclear
physics but also in atomic, molecular and mesoscopic physics. Theory predicts
that with increasing coupling strength to the channels the resonance widths of
all states should first increase but finally decrease again for most of the
states. In this letter, the first direct experimental verification of this
effect, known as resonance trapping, is presented. In the experiment a
microwave Sinai cavity with an attached waveguide with variable slit width was
used.Comment: to be published in Phys. Rev. Let
Coherent electronic and nuclear dynamics in a rhodamine heterodimer-DNA supramolecular complex
Elucidating the role of quantum coherences in energy migration within biological and artificial multichromophoric antenna systems is the subject of an intense debate. It is also a practical matter because of the decisive implications for understanding the biological processes and engineering artificial materials for solar energy harvesting. A supramolecular rhodamine heterodimer on a DNA scaffold was suitably engineered to mimic the basic donor-acceptor unit of light-harvesting antennas. Ultrafast 2D electronic spectroscopic measurements allowed identifying clear features attributable to a coherent superposition of dimer electronic and vibrational states contributing to the coherent electronic charge beating between the donor and the acceptor. The frequency of electronic charge beating is found to be 970 cm-1 (34 fs) and can be observed for 150 fs. Through the support of high level ab initio TD-DFT computations of the entire dimer, we established that the vibrational modes preferentially optically accessed do not drive subsequent coupling between the electronic states on the 600 fs of the experiment. It was thereby possible to characterize the time scales of the early time femtosecond dynamics of the electronic coherence built by the optical excitation in a large rigid supramolecular system at a room temperature in solution. © 2017 the Owner Societies.Multi valued and parallel molecular logi
Sub-femtosecond stark control of molecular photoexcitation with near single-cycle pulses.
Electric fields can tailor molecular potential energy surfaces by interaction with the electronic state-dependent molecular dipole moment. Recent developments in optics have enabled the creation of ultra-short few-cycle optical pulses with precise control of the carrier envelope phase (CEP) that determines the offset of the maxima in the field and the pulse envelope. This opens news ways of controlling ultrafast molecular dynamics by exploiting the CEP. In this work, we show that the photoabsorption efficiency of oriented H2CSO (sulfine) can be controlled by tuning the CEP. We further show that this control emanates from a resonance condition related to Stark shifting of the electronic energy levels
- …