548 research outputs found

    All-Optical Depletion of Dark Excitons from a Semiconductor Quantum Dot

    Get PDF
    Semiconductor quantum dots are considered to be the leading venue for fabricating on-demand sources of single photons. However, the generation of long-lived dark excitons imposes significant limits on the efficiency of these sources. We demonstrate a technique that optically pumps the dark exciton population and converts it to a bright exciton population, using intermediate excited biexciton states. We show experimentally that our method considerably reduces the DE population while doubling the triggered bright exciton emission, approaching thereby near-unit fidelity of quantum dot depletion.Comment: 5 pages, 3 figure

    Indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity

    Full text link
    We demonstrate purely resonant continuous-wave optical laser excitation to coherently prepare an excitonic state of a single semiconductor quantum dot (QDs) inside a high quality pillar microcavity. As a direct proof of QD resonance fluorescence, the evolution from a single emission line to the characteristic Mollow triplet10 is observed under increasing pump power. By controlled utilization of weak coupling between the emitter and the fundamental cavity mode through Purcell-enhancement of the radiative decay, a strong suppression of pure dephasing is achieved, which reflects in close to Fourier transform-limited and highly indistinguishable photons with a visibility contrast of 90%. Our experiments reveal the model-like character of the coupled QD-microcavity system as a promising source for the generation of ideal photons at the quantum limit. From a technological perspective, the vertical cavity symmetry -- with optional dynamic tunability -- provides strongly directed light emission which appears very desirable for future integrated emitter devices.Comment: 24 pages, 6 figure

    Generating single photons at GHz modulation-speed using electrically controlled quantum dot microlenses

    Full text link
    We report on the generation of single-photon pulse trains at a repetition rate of up to 1 GHz. We achieve this high speed by modulating the external voltage applied on an electrically contacted quantum dot microlens, which is optically excited by a continuous-wave laser. By modulating the photoluminescence of the quantum dot microlens using a square-wave voltage, single-photon emission is triggered with a response time as short as 270 ps being 6.5 times faster than the radiative lifetime of 1.75 ns. This large reduction in the characteristic emission time is enabled by a rapid capacitive gating of emission from the quantum dot placed in the intrinsic region of a p-i-n-junction biased below the onset of electroluminescence. Here, the rising edge of the applied voltage pulses triggers the emission of single photons from the optically excited quantum dot. The non-classical nature of the photon pulse train generated at GHz-speed is proven by intensity autocorrelation measurements. Our results combine optical excitation with fast electrical gating and thus show promise for the generation of indistinguishable single photons at high rates, exceeding the limitations set by the intrinsic radiative lifetime.Comment: 7 pages, 3 figure

    Generating single photons at gigahertz modulation-speed using electrically controlled quantum dot microlenses

    Get PDF
    This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Appl. Phys. Lett. 108, 021104 (2016) and may be found at https://doi.org/10.1063/1.4939658.We report on the generation of single-photon pulse trains at a repetition rate of up to 1 GHz. We achieve this speed by modulating the external voltage applied on an electrically contacted quantum dot microlens, which is optically excited by a continuous-wave laser. By modulating the photoluminescence of the quantum dot microlens using a square-wave voltage, single-photon emission is triggered with a response time as short as (281 ± 19) ps, being 6 times faster than the radiative lifetime of (1.75 ± 0.02) ns. This large reduction in the characteristic emission time is enabled by a rapid capacitive gating of emission from the quantum dot, which is placed in the intrinsic region of a p-i-n-junction biased below the onset of electroluminescence. Here, since our circuit acts as a rectifying differentiator, the rising edge of the applied voltage pulses triggers the emission of single photons from the optically excited quantum dot. The non-classical nature of the photon pulse train generated at GHz-speed is proven by intensity autocorrelation measurements with g(2)(0) = 0.3 ± 0.1. Our results combine optical excitation with fast electrical gating and thus show promise for the generation of indistinguishable single photons at rates exceeding the limitations set by the intrinsic radiative lifetime.BMBF, 03V0630, Entwicklung einer Halbleiterbasierten Einzelphotonenquelle für die Quanteninformationstechnologie (QSOURCE)DFG, 43659573, SFB 787: Halbleiter - Nanophotonik: Materialien, Modelle, Bauelement

    Conditional phase shift from a quantum dot in a pillar microcavity

    Full text link
    Large conditional phase shifts from coupled atom-cavity systems are a key requirement for building a spin photon interface. This in turn would allow the realisation of hybrid quantum information schemes using spin and photonic qubits. Here we perform high resolution reflection spectroscopy of a quantum dot resonantly coupled to a pillar microcavity. We show both the change in reflectivity as the quantum dot is tuned through the cavity resonance, and measure the conditional phase shift induced by the quantum dot using an ultra stable interferometer. These techniques could be extended to the study of charged quantum dots, where it would be possible to realise a spin photon interface

    Pump-power-driven mode switching in a microcavity device and its relation to Bose-Einstein condensation

    Get PDF
    TL, DV, and HAML contributed equally to this work. DV is grateful for support from the Studienstiftung des Deutschen Volkes. We acknowlege funding from the European Research Council under the European Union's Seventh Framework ERC Grant Agreeement No. 615613 and from the German Research Foundation (DFG) via Project No. Re2974/3-1 and the Research Unit FOR2414.We investigate the switching of the coherent emission mode of a bimodal microcavity device, occurring when the pump power is varied. We compare experimental data to theoretical results and identify the underlying mechanism based on the competition between the effective gain, on the one hand, and the intermode kinetics, on the other. When the pumping is ramped up, above a threshold, the mode with the largest effective gain starts to emit coherent light, corresponding to lasing. In contrast, in the limit of strong pumping, it is the intermode kinetics that determines which mode acquires a large occupation and shows coherent emission. We point out that this latter mechanism is akin to the equilibrium Bose-Einstein condensation of massive bosons. Thus, the mode switching in our microcavity device can be viewed as a minimal instance of Bose-Einstein condensation of photons. Moreover, we show that the switching from one cavity mode to the other always occurs via an intermediate phase where both modes are emitting coherent light and that it is associated with both superthermal intensity fluctuations and strong anticorrelations between both modes.Publisher PDFPeer reviewe

    Microcavity controlled coupling of excitonic qubits

    Get PDF
    Controlled non-local energy and coherence transfer enables light harvesting in photosynthesis and non-local logical operations in quantum computing. The most relevant mechanism of coherent coupling of distant qubits is coupling via the electromagnetic field. Here, we demonstrate the controlled coherent coupling of spatially separated excitonic qubits via the photon mode of a solid state microresonator. This is revealed by two-dimensional spectroscopy of the sample's coherent response, a sensitive and selective probe of the coherent coupling. The experimental results are quantitatively described by a rigorous theory of the cavity mediated coupling within a cluster of quantum dots excitons. Having demonstrated this mechanism, it can be used in extended coupling channels - sculptured, for instance, in photonic crystal cavities - to enable a long-range, non-local wiring up of individual emitters in solids

    Room temperature continuous–wave green lasing from an InGaN microdisk on silicon

    Get PDF
    Optically pumped green lasing with an ultra low threshold has been achieved using an InGaN/GaN based micro-disk with an undercut structure on silicon substrates. The micro-disks with a diameter of around 1 μm were fabricated by means of a combination of a cost-effective silica micro-sphere approach, dry-etching and subsequent chemical etching. The combination of these techniques both minimises the roughness of the sidewalls of the micro-disks and also produces excellent circular geometry. Utilizing this fabrication process, lasing has been achieved at room temperature under optical pumping from a continuous-wave laser diode. The threshold for lasing is as low as 1 kW/cm2. Time–resolved micro photoluminescence (PL) and confocal PL measurements have been performed in order to further confirm the lasing action in whispering gallery modes and also investigate the excitonic recombination dynamics of the lasing
    corecore