1,795 research outputs found

    Changes in loneliness and coping strategies during COVID-19

    Get PDF
    The social distancing measures implemented to slow the spread of COVID-19 impacted many aspects of people's lives. Previous research has reported negative consequences of these measures for people's psychological well-being, and that people differed in the impact on their psychological well-being. The present study aimed to describe the different coping strategies Dutch people used to deal with these measures and to link these strategies to loneliness. In addition, the study aimed to examine mean-level changes in loneliness and to explore individual differences in loneliness change. We used data from 2009 participants of a panel study of representative Dutch households. We assessed coping strategies used during the first wave of the COVID-19 pandemic in May 2020 and examined changes in loneliness between October 2019 (before COVID-19) and May 2020 (during the first wave of COVID-19). First, results showed that most people employed specific coping strategies. The most frequently used social strategies were chatting and (video)calling; the most frequently used non-social strategies were going outside, doing chores, watching TV, reading and self-care. Second, people who used more coping strategies reported lower levels of loneliness. Third, analyses revealed an average increase in loneliness between October 2019 and May 2020. Fourth, we observed two significant interaction effects, showing a stronger positive link between the number of social coping strategies and initial loneliness levels among those with a partner or living with others than for those who were single or lived alone. Yet, no moderating effects on changes in loneliness were found: people using more coping strategies did not differ in loneliness changes from people using fewer coping strategies. Together, findings suggest that loneliness increased in the Netherlands during the first phase of COVID-19 and that, while people's coping strategies were related to loneliness levels, they did not buffer against loneliness increases

    Effects of geometric anisotropy on local field distribution: Ewald-Kornfeld formulation

    Full text link
    We have applied the Ewald-Kornfeld formulation to a tetragonal lattice of point dipoles, in an attempt to examine the effects of geometric anisotropy on the local field distribution. The various problems encountered in the computation of the conditionally convergent summation of the near field are addressed and the methods of overcoming them are discussed. The results show that the geometric anisotropy has a significant impact on the local field distribution. The change in the local field can lead to a generalized Clausius-Mossotti equation for the anisotropic case.Comment: Accepted for publications, Journal of Physics: Condensed Matte

    Diffusive transport of light in three-dimensional disordered Voronoi structures

    Full text link
    The origin of diffusive transport of light in dry foams is still under debate. In this paper, we consider the random walks of photons as they are reflected or transmitted by liquid films according to the rules of ray optics. The foams are approximately modeled by three-dimensional Voronoi tessellations with varying degree of disorder. We study two cases: a constant intensity reflectance and the reflectance of thin films. Especially in the second case, we find that in the experimentally important regime for the film thicknesses, the transport-mean-free path does not significantly depend on the topological and geometrical disorder of the Voronoi foams including the periodic Kelvin foam. This may indicate that the detailed structure of foams is not crucial for understanding the diffusive transport of light. Furthermore, our theoretical values for transport-mean-free path fall in the same range as the experimental values observed in dry foams. One can therefore argue that liquid films contribute substantially to the diffusive transport of light in {dry} foams.Comment: 8 pages, 8 figure

    Electromagnetically induced transparency in cold 85Rb atoms trapped in the ground hyperfine F = 2 state

    Full text link
    We report electromagnetically induced transparency (EIT) in cold 85Rb atoms, trapped in the lower hyperfine level F = 2, of the ground state 52S1/2^{2}S_{1/2} (Tiwari V B \textit{et al} 2008 {\it Phys. Rev.} A {\bf 78} 063421). Two steady state Λ\Lambda-type systems of hyperfine energy levels are investigated using probe transitions into the levels F′^{\prime} = 2 and F′^{\prime} = 3 of the excited state 52P3/2^{2}P_{3/2} in the presence of coupling transitions F = 3 →\to F′^{\prime} = 2 and F = 3 →\to F′^{\prime} = 3, respectively. The effects of uncoupled magnetic sublevel transitions and coupling field's Rabi frequency on the EIT signal from these systems are studied using a simple theoretical model.Comment: 12 pages, 7 figure

    Recuperative system for high and ultra-high temperature flue gases. Final report

    Get PDF
    Advanced recuperative system technology for high and ultra-high temperature flue gases was investigated. Several high temperature recuperator system and component concepts were evolved and studied for the purpose of finding the schemes and designs that attain maximum fuel savings. The most promising concepts for industrial application were pre-engineered further to devise designs for adaptation to existing steel mills. The principal effort was aimed at steel soaking pit applications. The concept which provides the highest air preheat temperatures and the largest fuel savings for soaking pit application utilizing basic state-of-the-art technology is a low air pressure ceramic recuperator operated in conjunction with a higher air pressure metallic recuperator. This concept has the additional advantage that higher air pressures can be attained at the burner than can be attained with an all ceramic recuperator. These higher air pressures are required for high momentum, high efficiency burner performance, resulting in improved productivity and additional fuel savings. The technical feasibility of applying this high temperature recuperation system to existing soaking pits was established

    On the exact electric and magnetic fields of an electric dipole

    Full text link
    We derive from Jefimenko's equations a multipole expansion in order to obtain the exact expressions for the electric and magnetic fields of an electric dipole with an arbitrary time dependence. A few comments are also made about the usual expositions found in most common undergraduate and graduate textbooks as well as in the literature on this topic

    Implications of Pseudospin Symmetry on Relativistic Magnetic Properties and Gamow - Teller Transitions in Nuclei

    Get PDF
    Recently it has been shown that pseudospin symmetry has its origins in a relativistic symmetry of the Dirac Hamiltonian. Using this symmetry we relate single - nucleon relativistic magnetic moments of states in a pseudospin doublet to the relativistic magnetic dipole transitions between the states in the doublet, and we relate single - nucleon relativistic Gamow - Teller transitions within states in the doublet. We apply these relationships to the Gamow - Teller transitions from 39Ca^{39}Ca to its mirror nucleus 39K^{39}K.Comment: 17 pages, 2 figures, to be published in PRC. Slightly revised text with one reference adde

    Quark-Hadron Duality in Neutron (3He) Spin Structure

    Full text link
    We present experimental results of the first high-precision test of quark-hadron duality in the spin-structure function g_1 of the neutron and 3^3He using a polarized 3He target in the four-momentum-transfer-squared range from 0.7 to 4.0 (GeV/c)^2. Global duality is observed for the spin-structure function g_1 down to at least Q^2 = 1.8 (GeV/c)^2 in both targets. We have also formed the photon-nucleon asymmetry A_1 in the resonance region for 3He and found no strong Q^2-dependence above 2.2 (GeV/c)^2.Comment: 13 pages, 3 figure

    Moments of the neutron g2g_2 structure function at intermediate Q2Q^2

    Full text link
    We present new experimental results of the 3^3He spin structure function g2g_2 in the resonance region at Q2Q^2 values between 1.2 and 3.0 (GeV/c)2^2. Spin dependent moments of the neutron were then extracted. Our main result, the resonance contribution to the neutron d2d_2 matrix element, was found to be small at =2.4 (GeV/c)2^2 and in agreement with the Lattice QCD calculation. The Burkhardt-Cottingham sum rule for 3^3He and the neutron was tested with the measured data and using the Wandzura-Wilczek relation for the low xx unmeasured region. A small deviation was observed at Q2Q^2 values between 0.5 and 1.2 (GeV/c)2^2 for the neutron
    • …
    corecore