16 research outputs found

    Real-Time Particle Radiography by Means of Scintillating Fibers Tracker and Residual Range Detectors

    Get PDF
    In this chapter, a detailed description of the construction and the procedure for the measurement of performances of a charged particle imaging system is given. Such a system can be realized by the combined use of a position sensitive detector and a residual range detector. The position sensitive detector is made up of two superimposed and right-angled planes, each of which subsists of two layers of pre-aligned and juxtaposed scintillating fibers. The selected 500 μm square section fibers are optically coupled to two silicon photomultiplier arrays adopting a channel reduction system patented by the Istituto Nazionale di Fisica Nucleare. The residual range detector consists of 60 parallel layers of the same fibers used in the position detector, each of which is optically coupled to a channel of silicon photomultiplier array by means of two wavelength-shifting fibers. The sensitive area of both detectors is 90 × 90 mm2. The performance of the prototypes was tested in different facilities with protons and carbon ions at energy up to about 250 MeV and rate up to about 109 particles per second. The comparison between simulations and measurements confirms the validity of this system. Based on the results, a future development is a real-time radiography system exploiting high-intensity pencil beams and real-time treatment plan verification

    Recent results on heavy-ion induced reactions of interest for neutrinoless double beta decay at INFN-LNS

    Get PDF
    Abstract. The possibility to use a special class of heavy-ion induced direct reactions, such as double charge exchange reactions, is discussed in view of their application to extract information that may be helpful to determinate the nuclear matrix elements entering in the expression of neutrinoless double beta decay halflife. The methodology of the experimental campaign presently running at INFN - Laboratori Nazionali del Sud is reported and the experimental challenges characterizing such activity are describe

    NURE: An ERC project to study nuclear reactions for neutrinoless double beta decay

    Get PDF
    Neutrinoless double beta decay (0νββ) is considered the best potential resource to access the absolute neutrino mass scale. Moreover, if observed, it will signal that neutrinos are their own anti-particles (Majorana particles). Presently, this physics case is one of the most important research “beyond Standard Model” and might guide the way towards a Grand Unified Theory of fundamental interactions. Since the 0νββ decay process involves nuclei, its analysis necessarily implies nuclear structure issues. In the NURE project, supported by a Starting Grant of the European Research Council (ERC), nuclear reactions of double charge-exchange (DCE) are used as a tool to extract information on the 0νββ Nuclear Matrix Elements. In DCE reactions and ββ decay indeed the initial and final nuclear states are the same and the transition operators have similar structure. Thus the measurement of the DCE absolute cross-sections can give crucial information on ββ matrix elements. In a wider view, the NUMEN international collaboration plans a major upgrade of the INFN-LNS facilities in the next years in order to increase the experimental production of nuclei of at least two orders of magnitude, thus making feasible a systematic study of all the cases of interest as candidates for 0νββ

    Feasibility Study of a New Cherenkov Detector for Improving Volcano Muography

    No full text
    Muography is an expanding technique for internal structure investigation of large volume object, such as pyramids, volcanoes and also underground cavities. It is based on the attenuation of muon flux through the target in a way similar to the attenuation of X-ray flux through the human body for standard radiography. Muon imaging have to face with high background level, especially compared with the tiny near horizontal muon flux. In this paper the authors propose an innovative technique based on the measurement of Cherenkov radiation by Silicon photo-multipliers arrays to be integrated in a standard telescope for muography applications. Its feasibility study was accomplished by means of Geant4 simulations for the measurement of the directionality of cosmic-ray muons. This technique could be particularly useful for the suppression of background noise due to back-scattered particles whose incoming direction is likely to be wrongly reconstructed. The results obtained during the validation study of the technique principle confirm the ability to distinguish the arrival direction of muons with an efficiency higher than 98% above 1 GeV. In addition, a preliminary study on the tracking performance of the presented technique was introduced

    Design study of a low-power, low-noise front-end for multianode silicon drift detectors

    No full text
    The read-out for Silicon Drift Detectors in the form of a VLSI chip is presented, with a view to applications in High Energy Physics and space experiments. It is characterised by extremely low power dissipation, small noise and size

    Deep seawater inherent optical properties in the Southern Ionian Sea

    No full text
    The NEMO (NEutrino Mediterranean Observatory) Collaboration has been carrying out since 1998 an evaluation programme of deep sea sites suitable for the construction of the future Mediterranean km(3) Cerenkov neutrino telescope. We investigated the seawater optical and oceanographic properties of several deep sea marine areas close to the Italian Coast. Inherent optical properties (light absorption and attenuation coefficients) have been measured as a function of depth using an experimental apparatus equipped with standard oceanographic probes and the commercial transmissometer AC9 manufactured by WETLabs. This paper reports on the visible light absorption and attenuation coefficients measured in deep seawater of a marine region located in the Southern Ionian Sea, 60-100 km SE of Cape, Passero (Sicily). Data show that blue light absorption coefficient is about 0.015 m(-1) (corresponding to an absorption length of 67 m) close to the one of optically pure water and it does not show seasonal variation

    Recent results on heavy-ion induced reactions of interest for neutrinoless double beta decay at INFN-LNS

    No full text
    The possibility to use a special class of heavy-ion induced direct reactions, such as double charge exchange reactions, is discussed in view of their application to extract information that may be helpful to determinate the nuclear matrix elements entering in the expression of neutrinoless double beta decay half-life. The methodology of the experimental campaign presently running at INFN - Laboratori Nazionali del Sud is reported andthe experimental challenges characterizing such activity are described

    PHOS Technical Design Report

    No full text

    The forward muon spectrometer of ALICE

    No full text
    corecore