6 research outputs found

    Plasma lipid profiles discriminate bacterial from viral infection in febrile children

    Get PDF
    Fever is the most common reason that children present to Emergency Departments. Clinical signs and symptoms suggestive of bacterial infection are often non-specific, and there is no definitive test for the accurate diagnosis of infection. The 'omics' approaches to identifying biomarkers from the host-response to bacterial infection are promising. In this study, lipidomic analysis was carried out with plasma samples obtained from febrile children with confirmed bacterial infection (n = 20) and confirmed viral infection (n = 20). We show for the first time that bacterial and viral infection produces distinct profile in the host lipidome. Some species of glycerophosphoinositol, sphingomyelin, lysophosphatidylcholine and cholesterol sulfate were higher in the confirmed virus infected group, while some species of fatty acids, glycerophosphocholine, glycerophosphoserine, lactosylceramide and bilirubin were lower in the confirmed virus infected group when compared with confirmed bacterial infected group. A combination of three lipids achieved an area under the receiver operating characteristic (ROC) curve of 0.911 (95% CI 0.81 to 0.98). This pilot study demonstrates the potential of metabolic biomarkers to assist clinicians in distinguishing bacterial from viral infection in febrile children, to facilitate effective clinical management and to the limit inappropriate use of antibiotics

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Plasma lipid profiles discriminate bacterial from viral infection in febrile children

    Get PDF
    Fever is the most common reason that children present to Emergency Departments. Clinical signs and symptoms suggestive of bacterial infection ar

    A comprehensive diagnostic approach combining phylogenetic disease bracketing and CT imaging reveals osteomyelitis in a Tyrannosaurus rex

    Get PDF
    Traditional palaeontological techniques of disease characterisation are limited to the analysis of osseous fossils, requiring several lines of evidence to support diagnoses. This study presents a novel stepwise concept for comprehensive diagnosis of pathologies in fossils by computed tomography imaging for morphological assessment combined with likelihood estimation based on systematic phylogenetic disease bracketing. This approach was applied to characterise pathologies of the left fibula and fused caudal vertebrae of the non-avian dinosaur Tyrannosaurus rex. Initial morphological assessment narrowed the differential diagnosis to neoplasia or infection. Subsequent data review from phylogenetically closely related species at the clade level revealed neoplasia rates as low as 3.1% and 1.8%, while infectious-disease rates were 32.0% and 53.9% in extant dinosaurs (birds) and non-avian reptiles, respectively. Furthermore, the survey of literature revealed that within the phylogenetic disease bracket the oldest case of bone infection (osteomyelitis) was identified in the mandible of a 275-million-year-old captorhinid eureptile Labidosaurus. These findings demonstrate low probability of a neoplastic aetiology of the examined pathologies in the Tyrannosaurus rex and in turn, suggest that they correspond to multiple foci of osteomyelitis

    Clinical Practice Guideline: Hoarseness (Dysphonia) (Update) Executive Summary

    No full text
    Objective This guideline provides evidence-based recommendations on treating patients presenting with dysphonia, which is characterized by altered vocal quality, pitch, loudness, or vocal effort that impairs communication and/or quality of life. Dysphonia affects nearly one-third of the population at some point in its life. This guideline applies to all age groups evaluated in a setting where dysphonia would be identified or managed. It is intended for all clinicians who are likely to diagnose and treat patients with dysphonia. Purpose The primary purpose of this guideline is to improve the quality of care for patients with dysphonia, based on current best evidence. Expert consensus to fill evidence gaps, when used, is explicitly stated and supported with a detailed evidence profile for transparency. Specific objectives of the guideline are to reduce inappropriate variations in care, produce optimal health outcomes, and minimize harm. For this guideline update, the American Academy of Otolaryngology-Head and Neck Surgery Foundation selected a panel representing the fields of advanced practice nursing, bronchoesophagology, consumer advocacy, family medicine, geriatric medicine, internal medicine, laryngology, neurology, otolaryngology-head and neck surgery, pediatrics, professional voice, pulmonology, and speech-language pathology. Action Statements The guideline update group made strong recommendations for the following key action statements (KASs): (1) Clinicians should assess the patient with dysphonia by history and physical examination to identify factors where expedited laryngeal evaluation is indicated. These include but are not limited to recent surgical procedures involving the head, neck, or chest; recent endotracheal intubation; presence of concomitant neck mass; respiratory distress or stridor; history of tobacco abuse; and whether the patient is a professional voice user. (2) Clinicians should advocate voice therapy for patients with dysphonia from a cause amenable to voice therapy. The guideline update group made recommendations for the following KASs: (1) Clinicians should identify dysphonia in a patient with altered voice quality, pitch, loudness, or vocal effort that impairs communication or reduces quality of life (QOL). (2) Clinicians should assess the patient with dysphonia by history and physical examination for underlying causes of dysphonia and factors that modify management. (3) Clinicians should perform laryngoscopy, or refer to a clinician who can perform laryngoscopy, when dysphonia fails to resolve or improve within 4 weeks or irrespective of duration if a serious underlying cause is suspected. (4) Clinicians should perform diagnostic laryngoscopy, or refer to a clinician who can perform diagnostic laryngoscopy, before prescribing voice therapy and document/communicate the results to the speech-language pathologist (SLP). (5) Clinicians should advocate for surgery as a therapeutic option for patients with dysphonia with conditions amenable to surgical intervention, such as suspected malignancy, symptomatic benign vocal fold lesions that do not respond to conservative management, or glottic insufficiency. (6) Clinicians should offer, or refer to a clinician who can offer, botulinum toxin injections for the treatment of dysphonia caused by spasmodic dysphonia and other types of laryngeal dystonia. (7) Clinicians should inform patients with dysphonia about control/preventive measures. (8) Clinicians should document resolution, improvement or worsened symptoms of dysphonia, or change in QOL of patients with dysphonia after treatment or observation. The guideline update group made a strong recommendation against 1 action: (1) Clinicians should not routinely prescribe antibiotics to treat dysphonia. The guideline update group made recommendations against other actions: (1) Clinicians should not obtain computed tomography (CT) or magnetic resonance imaging (MRI) for patients with a primary voice complaint prior to visualization of the larynx. (2) Clinicians should not prescribe antireflux medications to treat isolated dysphonia, based on symptoms alone attributed to suspected gastroesophageal reflux disease (GERD) or laryngopharyngeal reflux (LPR), without visualization of the larynx. (3) Clinicians should not routinely prescribe corticosteroids in patients with dysphonia prior to visualization of the larynx. The policy level for the following recommendation about laryngoscopy at any time was an option: (1) Clinicians may perform diagnostic laryngoscopy at any time in a patient with dysphonia. Differences from Prior Guideline (1) Incorporating new evidence profiles to include the role of patient preferences, confidence in the evidence, differences of opinion, quality improvement opportunities, and any exclusion to which the action statement does not apply (2) Inclusion of 3 new guidelines, 16 new systematic reviews, and 4 new randomized controlled trials (3) Inclusion of a consumer advocate on the guideline update group (4) Changes to 9 KASs from the original guideline (5) New KAS 3 (escalation of care) and KAS 13 (outcomes) (6) Addition of an algorithm outlining KASs for patients with dysphonia
    corecore