936 research outputs found

    Solar H2_2 evolution in water with modified diketopyrrolopyrrole dyes immobilised on molecular Co and Ni catalyst–TiO2_2 hybrids

    Get PDF
    A series of diketopyrrolopyrrole (DPP) dyes with a terminal phosphonic acid group for attachment to metal oxide surfaces were synthesised and the effect of side chain modification on their properties investigated. The organic photosensitisers feature strong visible light absorption (λ\lambda = 400 to 575 nm) and electrochemical and fluorescence studies revealed that the excited state of all dyes provides sufficient driving force for electron injection into the TiO2_2 conduction band. The performance of the DPP chromophores attached to TiO2_2 nanoparticles for photocatalytic H2_2 evolution with co-immobilised molecular Co and Ni catalysts was subsequently studied, resulting in solar fuel generation with a dye-sensitised semiconductor nanoparticle system suspended in water without precious metal components. The performance of the DPP dyes in photocatalysis did not only depend on electronic parameters, but also on properties of the side chain such as polarity, steric hinderance and hydrophobicity as well as the specific experimental conditions and the nature of the sacrificial electron donor. In an aqueous pH 4.5 ascorbic acid solution with a phosphonated DuBois-type Ni catalyst, a DPP-based turnover number (TONDPP_{DPP}) of up to 205 was obtained during UV-free simulated solar light irradiation (100 mW cm2^{-2} , AM 1.5G, λ\lambda > 420 nm) after 1 day. DPP-sensitised TiO2_2 nanoparticles were also successfully used in combination with a hydrogenase or platinum instead of the synthetic H2_2 evolution catalysts and the platinum-based system achieved a TONDPP_{DPP} of up to 2660, which significantly outperforms an analogous system using a phosphonated Ru tris(bipyridine) dye (TONRu_{Ru} = 431). Finally, transient absorption spectroscopy was performed to study interfacial recombination and dye regeneration kinetics revealing that the different performances of the DPP dyes are most likely dictated by the different regeneration efficiencies of the oxidised chromophores.Support by the Christian Doppler Research Association (Austrian Federal Ministry of Science, Research and Economy and National Foundation for Research, Technology and Development), the OMV Group and the Ministry of Education (Singapore) is gratefully acknowledged. RG is grateful to FRQNT for a Postdoctoral Fellowship and JRD thanks the European Science Foundation project Intersolar (291482) for support

    The pre-WDVV ring of physics and its topology

    Full text link
    We show how a simplicial complex arising from the WDVV (Witten-Dijkgraaf-Verlinde-Verlinde) equations of string theory is the Whitehouse complex. Using discrete Morse theory, we give an elementary proof that the Whitehouse complex Δn\Delta_n is homotopy equivalent to a wedge of (n2)!(n-2)! spheres of dimension n4n-4. We also verify the Cohen-Macaulay property. Additionally, recurrences are given for the face enumeration of the complex and the Hilbert series of the associated pre-WDVV ring.Comment: 13 pages, 4 figures, 2 table

    Photoreduction of CO2 with a Formate Dehydrogenase Driven by Photosystem II Using a Semi-artificial Z-Scheme Architecture.

    Get PDF
    Solar-driven coupling of water oxidation with CO2 reduction sustains life on our planet and is of high priority in contemporary energy research. Here, we report a photoelectrochemical tandem device that performs photocatalytic reduction of CO2 to formate. We employ a semi-artificial design, which wires a W-dependent formate dehydrogenase (FDH) cathode to a photoanode containing the photosynthetic water oxidation enzyme, Photosystem II, via a synthetic dye with complementary light absorption. From a biological perspective, the system achieves a metabolically inaccessible pathway of light-driven CO2 fixation to formate. From a synthetic point of view, it represents a proof-of-principle system utilizing precious-metal-free catalysts for selective CO2-to-formate conversion using water as an electron donor. This hybrid platform demonstrates the translatability and versatility of coupling abiotic and biotic components to create challenging models for solar fuel and chemical synthesis.ERC Consolidator Grant, EPSRC, Christian Doppler Research Association (Austrian Federal Ministry for Digital and Economic Affairs and the National Foundation for Research, Technology and Development), the OMV group, Deutsche Forschungsgemeinschaft, European Union's Horizon 2020 MSCA, Fundação para a Ciência e Tecnologia (Portugal), COMPETE2020/POCI and European Union’s Horizon 202

    Immunomagnetic t-lymphocyte depletion (ITLD) of rat bone marrow using OX-19 monoclonal antibody

    Get PDF
    Graft versus host disease (GVHD) may be abrogated and host survival prolonged by in vitro depletion of T lymphocytes from bone marrow (BM) prior to allotransplantation. Using a mouse anti-rat pan T-lymphocyte monoclonal antibody (0×19) bound to monosized, magnetic, polymer beads, T lymphocytes were removed in vitro from normal bone marrow. The removal of the T lymphocytes was confirmed by flow cytometry. Injection of the T-lymphocyte-depleted bone marrow into fully allogeneic rats prevents the induction of GVHD and prolongs host survival. A highly efficient technique of T-lymphocyte depletion using rat bone marrow is described. It involves the binding of OX-19, a MoAb directed against all rat thy-mocytes and mature peripheral T lymphocytes, to monosized, magnetic polymer spheres. Magnetic separation of T lymphocytes after mixing the allogeneic bone marrow with the bead/OX-19 complex provides for a simple, rapid depletion of T lymphocytes from the bone marrow. In vitro studies using flow cytometry and the prevention of GVHD in a fully allogeneic rat bone marrow model have been used to demonstrate the effectiveness of the depletion procedure. © 1989 Informa UK Ltd All rights reserved: reproduction in whole or part not permitted

    Final Report of the AFIT Quality Initiative Internal Discovery Committee

    Get PDF
    This document contains results of a study designed to document the key elements for student success at AFIT in our continuing education and graduate programs and discover to what degree they exist at AFIT. The effort represents an attempt to guide improvement of our graduate and continuing education programs through experience available from our faculty, staff and students. The process outlined herein was designed to achieve success by allowing the participants to define what it means to succeed and then self-assess the presence of these factors at AFIT. It’s therefore a true internal discovery process since its output reflects the state of our internal understanding of teaching and learning excellence. This inclusive approach, which garnered participation from 400 people across AFIT’s schools, will be used in conjunction with the external committee\u27s recommendations to determine a course of action to invest into AFIT\u27s instructional capabilities
    corecore