17 research outputs found

    Is It Safe to Switch From Intravenous Immunoglobulin to Subcutaneous Immunoglobulin in Patients With Common Variable Immunodeficiency and Autoimmune Thrombocytopenia?

    Get PDF
    BackgroundA significant amount of common variable immunodeficiency (CVID) patients manifest with autoimmunity. Particularly, autoimmune thrombocytopenia (AITP) is commonly seen. Intravenous immunoglobulins (IVIG) are an established treatment option for both, CVID and AITP. Nonetheless, due to fewer systemic side effects, immunoglobulins are increasingly applied subcutaneously (SCIG).ObjectiveTo compare the efficacy and safety of IVIG and SCIG treatment in patients with both CVID and clinical relevant thrombocytopenia in the prevention of AITP bouts.MethodsPatients with both CVID and AITP were enrolled at the Centre for Chronic Immunodeficiency in Freiburg, Germany and at the Royal Free Hospital, London, UK. Clinical and laboratory features of patients were collected and analyzed.ResultsThis retrospective study recruited 61 adult patients between 19 and 71 years of age who had a diagnosis of CVID and at least one bout of thrombocytopenia defined as a platelet count of <50,000/μl if bleeding episodes occurred, or a platelet count of <20,000/μl without bleeding. Thirty patients received immunoglobulin through IVIG, and 31 patients were on SCIG replacement. One patient of the IVIG-group was excluded, because of a diffuse large B-cell lymphoma. We did not find a higher occurrence of thrombocytopenic events in CVID patients who received SCIG, compared to CVID patients who had IVIG, but we identified a low IgG through level as a risk factor for AITP bouts.ConclusionSCIG is at least as safe as IVIG for patients with CVID and concomitant AITP. However, an IgG through level under 7 g/l is a key factor for the development of AITP

    Rapid Flow Cytometry-Based Test for the Diagnosis of Lipopolysaccharide Responsive Beige-Like Anchor (LRBA) Deficiency

    No full text
    The diagnosis of lipopolysaccharide-responsive beige-like-anchor-protein (LRBA) deficiency currently relies on gene sequencing approaches that do not support a timely diagnosis and clinical management. We developed a rapid and sensitive test for clinical implementation based on the detection of LRBA protein by flow cytometry in peripheral blood cells after stimulation. LRBA protein was assessed in a prospective cohort of 54 healthy donors and 57 patients suspected of LRBA deficiency. Receiver operating characteristics analysis suggested an LRBA:MFI ratio cutoff point of 2.6 to identify LRBA-deficient patients by FACS with 94% sensitivity and 80% specificity and to discriminate them from patients with a similar clinical picture but other disease-causing mutations. This easy flow cytometry-based assay allows a fast screening of patients with suspicion of LRBA deficiency reducing therefore the number of patients requiring LRBA sequencing and accelerating the treatment implementation. Detection of biallelic mutations in LRBA is however required for a definitive diagnosis

    Rapid Flow Cytometry-Based Test for the Diagnosis of Lipopolysaccharide Responsive Beige-Like Anchor (LRBA) Deficiency

    No full text
    The diagnosis of lipopolysaccharide-responsive beige-like-anchor-protein (LRBA) deficiency currently relies on gene sequencing approaches that do not support a timely diagnosis and clinical management. We developed a rapid and sensitive test for clinical implementation based on the detection of LRBA protein by flow cytometry in peripheral blood cells after stimulation. LRBA protein was assessed in a prospective cohort of 54 healthy donors and 57 patients suspected of LRBA deficiency. Receiver operating characteristics analysis suggested an LRBA:MFI ratio cutoff point of 2.6 to identify LRBA-deficient patients by FACS with 94% sensitivity and 80% specificity and to discriminate them from patients with a similar clinical picture but other disease-causing mutations. This easy flow cytometry-based assay allows a fast screening of patients with suspicion of LRBA deficiency reducing therefore the number of patients requiring LRBA sequencing and accelerating the treatment implementation. Detection of biallelic mutations in LRBA is however required for a definitive diagnosis

    Non-invasive imaging of ferucarbotran labeled INS-1E cells and rodent islets in vitro and in transplanted diabetic rats

    No full text
    Transplantation of pancreatic islets is a promising strategy for restoring insulin secretion in diabetes mellitus. To monitor transplanted islets, a method to evaluate the distribution in a non-invasive manner in vivo is needed. INS-1E, a stable differentiated insulin secreting cell line, and rodent islets were used to monitor cell transplantation by MRI. For labeling INS-1E cells in vitro, increasing concentrations of Resovist in culture medium were tested. For MR imaging in a clinical 3T scanner, we placed a layer of labeled INS-1E cells between two layers of 4% gelatin. Viability assay was performed. Cell function was evaluated by static incubation assay to assess insulin secretion. For in vivo imaging, iron labeled rodent islets were transplanted into the liver of streptozotocin induced diabetic rats and visualized by MRI. Blood sugar values were controlled and liver tissue was removed for histological analysis. SPIO labeled INS-1E cells did not show altered viability or reduced glucose stimulated insulin secretion in vitro. Double staining of labeled and unlabeled INS-1E cells showed no difference in the staining pattern. Labeling of rodent islets with SPIOs does not reduce their secretory activity or alter their viability. We visualized SPIO-labeled INS-1E cells and rat islets in vitro using a clinical 3T scanner. Diabetic rats transplanted with SPIO-labeled islets became normoglycemic. MR imaging successfully verified the distribution of labeled transplanted cells in vivo. Labeling INS-1E cells and rat islets with SPIOs does not alter their viability, while enabling MR imaging of labeled cells in vitro and within the living organism

    image_3_Rapid Flow Cytometry-Based Test for the Diagnosis of Lipopolysaccharide Responsive Beige-Like Anchor (LRBA) Deficiency.tif

    No full text
    <p>The diagnosis of lipopolysaccharide-responsive beige-like-anchor-protein (LRBA) deficiency currently relies on gene sequencing approaches that do not support a timely diagnosis and clinical management. We developed a rapid and sensitive test for clinical implementation based on the detection of LRBA protein by flow cytometry in peripheral blood cells after stimulation. LRBA protein was assessed in a prospective cohort of 54 healthy donors and 57 patients suspected of LRBA deficiency. Receiver operating characteristics analysis suggested an LRBA:MFI ratio cutoff point of 2.6 to identify LRBA-deficient patients by FACS with 94% sensitivity and 80% specificity and to discriminate them from patients with a similar clinical picture but other disease-causing mutations. This easy flow cytometry-based assay allows a fast screening of patients with suspicion of LRBA deficiency reducing therefore the number of patients requiring LRBA sequencing and accelerating the treatment implementation. Detection of biallelic mutations in LRBA is however required for a definitive diagnosis.</p

    image_1_Rapid Flow Cytometry-Based Test for the Diagnosis of Lipopolysaccharide Responsive Beige-Like Anchor (LRBA) Deficiency.tif

    No full text
    <p>The diagnosis of lipopolysaccharide-responsive beige-like-anchor-protein (LRBA) deficiency currently relies on gene sequencing approaches that do not support a timely diagnosis and clinical management. We developed a rapid and sensitive test for clinical implementation based on the detection of LRBA protein by flow cytometry in peripheral blood cells after stimulation. LRBA protein was assessed in a prospective cohort of 54 healthy donors and 57 patients suspected of LRBA deficiency. Receiver operating characteristics analysis suggested an LRBA:MFI ratio cutoff point of 2.6 to identify LRBA-deficient patients by FACS with 94% sensitivity and 80% specificity and to discriminate them from patients with a similar clinical picture but other disease-causing mutations. This easy flow cytometry-based assay allows a fast screening of patients with suspicion of LRBA deficiency reducing therefore the number of patients requiring LRBA sequencing and accelerating the treatment implementation. Detection of biallelic mutations in LRBA is however required for a definitive diagnosis.</p

    table_1_Rapid Flow Cytometry-Based Test for the Diagnosis of Lipopolysaccharide Responsive Beige-Like Anchor (LRBA) Deficiency.PDF

    No full text
    <p>The diagnosis of lipopolysaccharide-responsive beige-like-anchor-protein (LRBA) deficiency currently relies on gene sequencing approaches that do not support a timely diagnosis and clinical management. We developed a rapid and sensitive test for clinical implementation based on the detection of LRBA protein by flow cytometry in peripheral blood cells after stimulation. LRBA protein was assessed in a prospective cohort of 54 healthy donors and 57 patients suspected of LRBA deficiency. Receiver operating characteristics analysis suggested an LRBA:MFI ratio cutoff point of 2.6 to identify LRBA-deficient patients by FACS with 94% sensitivity and 80% specificity and to discriminate them from patients with a similar clinical picture but other disease-causing mutations. This easy flow cytometry-based assay allows a fast screening of patients with suspicion of LRBA deficiency reducing therefore the number of patients requiring LRBA sequencing and accelerating the treatment implementation. Detection of biallelic mutations in LRBA is however required for a definitive diagnosis.</p

    table_2_Rapid Flow Cytometry-Based Test for the Diagnosis of Lipopolysaccharide Responsive Beige-Like Anchor (LRBA) Deficiency.PDF

    No full text
    <p>The diagnosis of lipopolysaccharide-responsive beige-like-anchor-protein (LRBA) deficiency currently relies on gene sequencing approaches that do not support a timely diagnosis and clinical management. We developed a rapid and sensitive test for clinical implementation based on the detection of LRBA protein by flow cytometry in peripheral blood cells after stimulation. LRBA protein was assessed in a prospective cohort of 54 healthy donors and 57 patients suspected of LRBA deficiency. Receiver operating characteristics analysis suggested an LRBA:MFI ratio cutoff point of 2.6 to identify LRBA-deficient patients by FACS with 94% sensitivity and 80% specificity and to discriminate them from patients with a similar clinical picture but other disease-causing mutations. This easy flow cytometry-based assay allows a fast screening of patients with suspicion of LRBA deficiency reducing therefore the number of patients requiring LRBA sequencing and accelerating the treatment implementation. Detection of biallelic mutations in LRBA is however required for a definitive diagnosis.</p

    image_5_Rapid Flow Cytometry-Based Test for the Diagnosis of Lipopolysaccharide Responsive Beige-Like Anchor (LRBA) Deficiency.tif

    No full text
    <p>The diagnosis of lipopolysaccharide-responsive beige-like-anchor-protein (LRBA) deficiency currently relies on gene sequencing approaches that do not support a timely diagnosis and clinical management. We developed a rapid and sensitive test for clinical implementation based on the detection of LRBA protein by flow cytometry in peripheral blood cells after stimulation. LRBA protein was assessed in a prospective cohort of 54 healthy donors and 57 patients suspected of LRBA deficiency. Receiver operating characteristics analysis suggested an LRBA:MFI ratio cutoff point of 2.6 to identify LRBA-deficient patients by FACS with 94% sensitivity and 80% specificity and to discriminate them from patients with a similar clinical picture but other disease-causing mutations. This easy flow cytometry-based assay allows a fast screening of patients with suspicion of LRBA deficiency reducing therefore the number of patients requiring LRBA sequencing and accelerating the treatment implementation. Detection of biallelic mutations in LRBA is however required for a definitive diagnosis.</p

    Development of a tool for prediction of ovarian cancer in patients with adnexal masses: Value of plasma fibrinogen

    No full text
    <div><p>Objective</p><p>To develop a tool for individualized risk estimation of presence of cancer in women with adnexal masses, and to assess the added value of plasma fibrinogen.</p><p>Study design</p><p>We performed a retrospective analysis of a prospectively maintained database of 906 patients with adnexal masses who underwent cystectomy or oophorectomy. Uni- and multivariate logistic regression analyses including pre-operative plasma fibrinogen levels and established predictors were performed. A nomogram was generated to predict the probability of ovarian cancer. Internal validation with split-sample analysis was performed. Decision curve analysis (DCA) was then used to evaluate the clinical net benefit of the prediction model.</p><p>Results</p><p>Ovarian cancer including borderline tumours was found in 241 (26.6%) patients. In multivariate analysis, elevated plasma fibrinogen, elevated CA-125, suspicion for malignancy on ultrasound, and postmenopausal status were associated with ovarian cancer and formed the basis for the nomogram. The overall predictive accuracy of the model, as measured by AUC, was 0.91 (95% CI 0.87–0.94). DCA revealed a net benefit for using this model for predicting ovarian cancer presence compared to a strategy of treat all or treat none.</p><p>Conclusion</p><p>We confirmed the value of plasma fibrinogen as a strong predictor for ovarian cancer in a large cohort of patients with adnexal masses. We developed a highly accurate multivariable model to help in the clinical decision-making regarding the presence of ovarian cancer. This model provided net benefit for a wide range of threshold probabilities. External validation is needed before a recommendation for its use in routine practice can be given.</p></div
    corecore