17,673 research outputs found

    Finitely generated ideal languages and synchronizing automata

    Full text link
    We study representations of ideal languages by means of strongly connected synchronizing automata. For every finitely generated ideal language L we construct such an automaton with at most 2^n states, where n is the maximal length of words in L. Our constructions are based on the De Bruijn graph.Comment: Submitted to WORDS 201

    Wetspun poly-L-(lactic acid)-borosilicate bioactive glass scaffolds for guided bone regeneration

    Get PDF
    We developed a porous poly-L-lactic acid (PLLA) scaffold compounded with borosilicate bioactive glasses (BBGs) endowing it with bioactive properties. Porous PLLA-BBG fibre mesh scaffolds were successfully prepared by the combination of wet spinning and fibre bonding techniques. Micro-computed tomography (μCT) confirmed that the PLLA-BBG scaffolds containing ≈ 25% of BBGs (w/w) exhibited randomly interconnected porous (58 to 62% of interconnectivity and 53 to 67% of porosity) with mean pore diameters higher that 100 μm. Bioactivity and degradation studies were performed by immersing the scaffolds in simulated body fluid (SBF) and ultrapure water, respectively. The PLLA-BBG scaffolds presented a faster degradation rate with a constant release of inorganic species, which are capable to produce calcium phosphate structures at the surface of the material after 7 days of immersion in SBF (Ca/P ratio of ~ 1.7). Cellular in vitro studies with human osteosarcoma cell line (Saos-2) and human adipose-derived stem cells (hASCs) showed that PLLA-BBGs are not cytotoxic to cells, while demonstrating their capacity to promote cell adhesion and proliferation. Overall, we showed that the proposed scaffolds present a tailored kinetics on the release of inorganic species and controlled biological response under conditions that mimic the bone physiological environment.JSF acknowledges the Portuguese Foundation for Science and Technology (FCT) for his PhD grant BD/73162/2010. This work was partially supported by the European Research Council grant agreement ERC-2012-ADG20120216-321266 - project ComplexiTE

    Study on the perception of DIY in domotics in Portugal

    Get PDF
    The growth of the home automation market depends on technological innovations, rapid evolution of the Internet of Things and Do-It-Yourself (DIY) solutions. This project analysed the perception about domotics related to DIY in Portugal, intending to understand if smart home technologies are used and valued, which factors motivate their acquisition, their purpose and the advantages perceived by users. A questionnaire was used to collect data, resulting in an exploratory study based on data from a convenience sample. The model to evaluate this study was based on the constructs based on Technology Acceptance Models - TAM. From the results obtained, it was concluded that the respondents have a positive perception about domotics and its usefulness faced with DIY on the technologies that make a smart home. Regarding the acquisition and installation of technologies associated with home automation on their own, the respondents are divided, as half consider that they can do it autonomously and the other half only with the intervention of specialists in home automation

    Biomimetic strategies to engineer mineralised human tissues

    Get PDF
    In the last few years, many reports have been describing promising biocompatible and biodegradable materials that can mimic in a certain extent the multidimensional hierarchical structure of bone, while are also capable of releasing bioactive agents or drugs in a controlled manner. Despite these great advances, new developments in the design and fabrication technologies are required to address the need to engineer suitable biomimetic materials in order tune cells functions, i.e. enhance cell-biomaterial interactions, and promote cell adhesion, proliferation, and differentiation ability. Scaffolds, hydrogels, fibres and composite materials are the most commonly used as biomimetics for bone tissue engineering. Dynamic systems such as bioreactors have also been attracting great deal of attention as it allows developing a wide range of novel in vitro strategies for the homogeneous coating of scaffolds and prosthesis with ceramics, and production of biomimetic constructs, prior its implantation in the body. Herein, it is overviewed the biomimetic strategies for bone tissue engineering, recent developments and future trends. Conventional and more recent processing methodologies are also described

    On the determination of the spin of the black hole in Cyg X-1 from X-ray reflection spectra

    Get PDF
    The spin of Cygnus X-1 is measured by fitting reflection models to Suzaku data covering the energy band 0.9-400 keV. The inner radius of the accretion disc is found to lie within 2 gravitational radii (r_g=GM/c^2) and a value for the dimensionless black hole spin is obtained of 0.97^{+0.014}_{-0.02}. This agrees with recent measurements using the continuum fitting method by Gou et al. and of the broad iron line by Duro et al. The disc inclination is measured at 23.7^{+6.7}_{-5.4} deg, which is consistent with the recent optical measurement of the binary system inclination by Orosz et al of 27+/-0.8 deg. We pay special attention to the emissivity profile caused by irradiation of the inner disc by the hard power-law source. The X-ray observations and simulations show that the index q of that profile deviates from the commonly used, Newtonian, value of 3 within 3r_g, steepening considerably within 2r_g, as expected in the strong gravity regime.Comment: 7 pages, 10 figures, MNRAS in pres

    Influence of the external pressure on the quantum correlations of molecular magnets

    Full text link
    The study of quantum correlations in solid state systems is a large avenue for research and their detection and manipulation are an actual challenge to overcome. In this context, we show by using first-principles calculations on the prototype material KNaCuSi4_{4}O10_{10} that the degree of quantum correlations in this spin cluster system can be managed by external hydrostatic pressure. Our results open the doors for research in detection and manipulation of quantum correlations in magnetic systems with promising applications in quantum information science

    Writing electronic ferromagnetic states in a high-temperature paramagnetic nuclear spin system

    Full text link
    In this paper we use the Nuclear Magnetic Resonance (NMR) to write eletronic states of a ferromagnetic system into a high-temperature paramagnetic nuclear spins. Through the control of phase and duration of radiofrequency pulses we set the NMR density matrix populations, and apply the technique of quantum state tomography to experimentally obtain the matrix elements of the system, from which we calculate the temperature dependence of magnetization for different magnetic fields. The effects of the variation of temperature and magnetic field over the populations can be mapped in the angles of spins rotations, carried out by the RF pulses. The experimental results are compared to the Brillouin functions of ferromagnetic ordered systems in the mean field approximation for two cases: the mean field is given by (i) B=B0+λMB=B_0+\lambda M and (ii) B=B0+λM+λM3B=B_0+\lambda M + \lambda^\prime M^3, where B0B_0 is the external magnetic field, and λ,λ\lambda, \lambda^\prime are mean field parameters. The first case exhibits second order transition, whereas the second case has first order transition with temperature hysteresis. The NMR simulations are in good agreement with the magnetic predictions
    corecore