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Abstract 

We developed a porous Poly-L-Lactic Acid (PLLA) scaffold compounded with 

borosilicate bioactive glasses (BBGs) endowing it with bioactive properties. Porous 

PLLA-BBGs fibre mesh scaffolds were successfully prepared by the combination of 

wet spinning and fibre bonding techniques. Micro-computed tomography (µCT) 

confirmed that the PLLA-BBG scaffolds containing ≈ 25% of BBGs (w/w) exhibited 

randomly interconnected porous (58 to 62% of interconnectivity and 53 to 67% of 

porosity) with mean pore diameters higher that 100 µm. Bioactivity and degradation 

studies were performed by immersing the scaffolds in simulated body fluid (SBF) and 

ultrapure water, respectively. The PLLA-BBG scaffolds presented a faster degradation 

rate with a constant release of inorganic species, which are capable to produce calcium 

phosphate structures at the surface of the material after 7 days of immersion in SBF 

(Ca/P ratio of ~1.7). Cellular in vitro studies with human osteosarcoma cell line (Saos-2) 

and human adipose-derived stem cells (hASCs) showed that PLLA-BBGs are not 

cytotoxic to cells, while demonstrating their capacity to promote cell adhesion and 

proliferation. Overall, we showed that the proposed scaffolds present a tailored kinetics 

on the release of inorganic species and controlled biological response under conditions 

that mimic the bone physiological environment. 

 

Keywords: Poly-L-Lactic Acid, borosilicate bioactive glasses, bioactivity, scaffold, 

interconnected porosity 
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1. Introduction 

Bone has a remarkable auto-regenerative capacity; however, when a large defect is 

generated, by accident or disease, it cannot regenerate the lost tissue by itself. At present, 

both autogenic and allogenic transplants have been used for bone repair, but with 

different limitations, namely: the autogenic strategy is restricted in supply and limited 

by the size of the defect; while the allogenic one may present incompatibility and a high 

risk of infection and of transplant rejection [1, 2]. In this context, bone tissue 

engineering is a promising approach that provides a strategy based on the use of 

biodegradable porous scaffolds that serves as a support and mimics of the bone 

extracellular matrix (ECM), which promotes cell attachment and proliferation. The 

matching of the scaffolds degradation kinetics with the timeframe of the cellular 

regenerative processes, allows the formation of new bone while the scaffolds are 

degraded [3-5]. 

Numerous biomaterials have been developed based on natural and synthetic 

biodegradable polymers or bioactive ceramics [6-12]. Synthetic materials present 

limited variability allowing the optimisation of the scaffold’s properties (e.g. porosity 

and degradation) to promote cell adhesion and proliferation, as well as the capacity to 

induce the formation of new bone. Poly-L-Lactic Acid (PLLA) is one of such polymers: 

it is biodegradable and has been accepted in different medical devices by the US Federal 

Food and Drug Administration (FDA), which makes it highly attractive for biomedical 

applications. Furthermore, PLLA is a biocompatible material, which can be 

manufactured through various techniques [13-17]. On the other hand, inorganic 

materials, e.g. silicate-based bioactive glasses (BG), hydroxyapatite and tricalcium 

phosphates, have been widely studied due to their reported bioactivity, 

osteoconductivity, and ability to directly bond to bone; as well as improving cell 
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adhesion, proliferation and differentiation [18-22]. Moreover, some inorganic materials 

(e.g. composed by Si, B, Sr, Ca, Mg or Zn) are reported to have a part in bone 

metabolism, osteo- and angiogenesis, cell proliferation, as well as, presenting 

antibacterial properties [18, 23-26]. 

Hitherto no single material has all the essential attributes required for an ideal scaffold 

for bone tissue engineering. Therefore, there is a rising interest in three-dimensional (3D) 

scaffolds that can combine the bioresorbability of the polymer with the bioactivity of 

glass/ceramic phases, resulting in a material that combines all the properties that were 

previously described. Herein we propose a composite system of PLLA-borosilicate 

bioactive glass (PLLA-BBG) that provides a structural support for cellular attachment 

and proliferation, leading to the engineering of bone tissue that combine its chemical, 

biochemical and biological properties. PLLA as a slow degradation rate that makes it a 

more suitable material for bone regeneration, in which the healing times are longer. 

Moreover, it degrades into lactic acid, which can be subsequently secreted as carbon 

dioxide by entering the Krebs cycle. While, the composite fillers (i.e. BBGs) might be 

able to improve its mechanical properties, they can control the acidity of the 

surrounding tissue (generated by the inflammatory process that precedes tissue 

regeneration) during its degradation. The release of glass modifier cations from the 

BBGs, can be used by the surrounding cellular environment to produce a phosphated 

mineral phase, which is essential to create a strong interfacial adhesion between the 

scaffold and bone [5]. Wet spinning methodology allows the fabrication of complex 3D 

structures with controlled properties such as, porosity, pore structure and 

interconnectivity, influencing: cell adhesion, proliferation and vascularisation trough the 

scaffold [27, 28]. In wet spinning, the polymer dissolved in a suitable solvent is 

extruded into a liquid that is miscible with the spinning solvent but a non-solvent of the 
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polymer. This results in to solvent removal and fibres precipitation. Unlike 

electrospinning, wet spinning is able to create macro to micro-scale fibres allowing cell 

penetration through the scaffold for bone regeneration and vascularisation. The required 

pore size might differ between cell types [29], however, numerous studies support that 

the optimal pore size for regeneration and mineralisation of bone ranges from 100 to 

300µm [30, 31]. Recent studies of the effect of porosity on the ingrowth of MC3T3-E1 

pre-osteoblastic cells into 3D scaffolds reported a suitable cellular response within this 

range [32]. 

In this context, we compounded PLLA-BBG into fibrous scaffolds (25% w/w of BBGs), 

where the BBGs were formulated with different divalent modifier cations (i.e. Ca
2+

, 

Mg
2+

 and Sr
2+

), and tested them for their biodegradability, bioactivity and biological 

response using human osteosarcoma cell line (Saos-2) and human adipose-derived stem 

cells (hASCs). 

2. Experimental 

2.1 Materials 

All chemicals used for the glass synthesis were reagent grade: boron oxide (Alfa Aesar, 

Germany), calcium carbonate (Sigma-Aldrich, Portugal), sodium bicarbonate (Sigma-

Aldrich, Australia), silica gel 60M (Macherey-Nagel, Germany), magnesium oxide 

(Sigma-Aldrich, Portugal) and strontium carbonate (Sigma-Aldrich, Australia). PLLA 

(with a L-lactide content of 99.6% and an average Mw of 69 000 g.mol
−1

, from Cargill 

Dow LLC, USA) was used to produce the desired fibre meshes. 

BBGs were produced by mixing appropriate amounts of SiO2, B2O3, NaHCO3, and 

CaCO3, or MgO, or SrCO3 on an agate mortar with ethanol. Upon drying, the mixture 

was heated to 1450 ºC on air for 1 hour. Afterwards, the melt was quickly poured into a 
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water bath maintained at 4 ºC to form a glass frit. The glasses, of general formula 

0.05Na2O  xMgO  yCaO  (0.35-x-y)SrO  0.20B2O3  0.40SiO2 (molar ratio, where x, y 

= 0.35 or 0.00, and x ≠ y), were ground in an Agate mortar (RETSCH, Germany) to 

obtain microparticles and, afterwards, sieved to a size smaller than 63 μm. The density 

of the BBGs was measured using a Multi pycnometer (Quantachrome Instruments, USA) 

with helium at 110 °C using ≈ 5 g of each sample. 

2.2. Preparation of wet-spun fibre mesh scaffolds 

PLLA-BBG fibres were fabricated through the wet spinning of a PLLA solution 

containing a homogeneous suspension of BBG particles. These fibres were transformed 

into circular shape fibre mesh scaffolds by fibre bonding. Three different PLLA-BBG 

scaffolds were fabricated (PLLA-BBG-Mg, PLLA-BBG-Ca and PLLA-BBG-Sr) using 

three different BBGs (BBG-Mg, BBG-Ca and BBG-Sr, that present, respectively, Mg, 

Ca and Sr as divalent modifier cations). Unfilled PLLA scaffolds were used as control. 

2.2.1. Wet spinning 

After preparing a PLLA solution in chloroform (30% w/v), BBGs (25% BBG/PLLA 

w/w) were added under constant stirring to avoid the agglomeration of BBG particles. 

Subsequently, the PLLA-BBG solution was wet spun thought a syringe equipped with a 

25 G needle with the tip cut horizontally and perpendicular to the flow. The fibres were 

extruded at a rate of 15 ml/h into a coagulation bath of methanol. Finally, fibres were 

collected and dried overnight on the fume hood at room temperature. 

2.2.2. Fibre bonding 

To fabricate the PLLA-BBG fibre mesh scaffolds, fibres (≈ 80 mg) were first pre-

moulded into a 20 mm diameter metal mould and bonded at 147 °C with a 5 kg weight 
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on the top for 6 min. The fibre bonding temperature was optimised with the help of 

differential scanning calorimetry analysis (DSC) of PLLA (Tg of 56.7 °C and a Tm of 

165.4 °C). Finally, a 6 mm puncture was used to obtain specimens of 6 mm diameter 

and 0.5 mm height. 

2.3. In vitro characterisation of wet-spun fibre mesh scaffolds 

2.3.1. Differential scanning calorimetry (DSC) analysis 

The glass transition (Tg) and melting (Tm) temperatures of the PLLA were determined 

by differential scanning calorimetry (DSC, TA Instrument Q100 calorimeter, USA), 

using a double run between -40 to 200 °C (first run to determine Tg and to remove 

thermal history, and second run to determine Tm), at a heating and cooling rates of 

10 °C/min under nitrogen atmosphere, using ~8 mg of sample. 

2.3.2. Scanning electron microscopy (SEM) 

Scanning Electron Microscopy (Leica Cambridge S360, equipped with an energy 

dispersive X-ray spectrometer link-eXL-II, UK) was used to assess the surface 

morphology of the PLLA-BBG scaffolds, as well as to monitor the deposition of 

calcium phosphate structures on the surface of the fibres after 7 and 14 days of 

immersion in Simulated Body Fluid (SBF).[33] All the PLLA-BBG scaffolds were 

sputter-coated (Fisons Instruments SC502, UK) with gold before the analysis. All the 

micrographs were acquired using a beam energy of 5.0kV and a working distance (WD) 

of ≈5.2 mm. 

2.3.3. X-ray diffraction analysis (XRD) 

The PLLA-BBG scaffolds were analysed before and after 7 and 14 days of immersion 

in SBF by X-ray diffraction (XRD, Bruker D8 Discover, Germany), using Cu radiation 
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at a wavelength of 1.5406 Å at 40 kV and 40 mA, with a step size of 0.02 ° in a 2θ 

range between 5 ° to 50 ° and a scanning speed of 1 s/step. The crystalline patterns were 

identified by comparison with the data listed in the Joint Commission on Powder 

Diffraction Standards (JCPDS). 

2.3.4. Micro-computed tomography (µCT) 

Three samples from each PLLA-BBG and PLLA scaffolds were analysed by micro-

computed tomography (µCT) using a high-resolution µ-CT scanner (Skyscan 1072, 

Kontich, Belgium), a pixel size of 6 µm and integration time of 1.7 ms. The X-ray 

source was set at 43 kV of energy and 234 µA of current. Approximately 400 

projections were acquired over a rotation range of 180°, with a rotation step of 0.45°. 

Data sets were reconstructed using standardised cone-beam reconstruction software 

(NRecon v1.4.3, SkyScan). The output format for each sample was 400 serial 1024 × 

1024 bitmap images. Representative data sets were segmented into binary images using 

a dynamic threshold of 40-150 for the polymer (blue images, Figure 2) and 150-255 for 

BBGs (red images, Figure 2). These representative data sets were used for 

morphometric 3D analysis (CT Analyser, v1.5.1.5, SkyScan) and to build 3D models 

(ANT 3D creator, v2.4, SkyScan). The morphometric analysis included porosity, mean 

wall thickness, mean pore diameter and pore interconnectivity. 3D virtual models of 

representative regions in the bulk of the scaffolds were created, visualised, and 

registered using image processing software (CT Analyser and ANT 3D creator). 

2.3.5. Bioactivity assay 

SBF was produced in accordance with the procedure of Kokubo et al [33]. Triplicate 

samples of the PLLA-BBG scaffolds, were immersed in SBF at a ratio of 10:10 [PLLA-

BBG scaffolds (mg): SBF (mL)] and incubated for 7 and 14 days in an oven maintained 
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at 37 °C. After each time point samples of PLLA-BBG scaffold were collected and 

dried at 37 ºC in order to obtain the XRD patterns and SEM micrographs. Each 

immersion solution was filtered and analysed by inductive coupled plasma (ICP, Horiba, 

Japan) to determine the corresponding Ca and P concentrations present in the solution at 

each time point. The ICP absorption was measure at specific wavelengths (λ= 393.366 

nm for Ca; λ=213.62 nm for P) and the Ca and P concentrations were determined using 

calibration curves previously obtained with standard solutions (Alfa Aesar). 

2.3.6. Degradation assay 

The PLLA-BBG scaffolds (n=3 per time point) were immersed in ultrapure water at a 

ratio of 10:10 [PLLA-BBG scaffolds (mg): water (mL)] for 7, 14, 21, 28, 60 and 90 

days in a water-shaking bath at 60 rpm and 37°C. Each immersion solution was filtered 

and their respective pH was measured. ICP analysis was performed to determine the Si, 

B, Ca, Mg and Sr concentrations in the immersion solutions. The absorption was 

measure at specific wavelengths (λ= 251.611 nm for Si, λ= 249.773 nm for B, λ= 

393.366 nm for Ca, λ= 407.771 nm for Sr and λ= 279.553 nm for Mg) and their 

concentrations were determined using calibration curves previously obtained with 

standard solutions (Alfa Aesar). 

The PLLA-BBG scaffolds were removed from the immersion solution, the excess 

surface water was removed and the samples were immediately weighed. Afterwards, the 

samples were dried in the oven at 37 °C, to constant weight, recording the final mass of 

each specimen. The water uptake (WU) was calculated according to Eq. (1): 

𝑊𝑈(%) = (𝑚𝑡𝑝 − 𝑚𝑓 ) 𝑚𝑓 ⁄ × 100    Eq. (1) 
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Where mtp is the wet mass of the specimen at the specific time (days), and mf is the final 

mass after immersion and drying. The weight loss (WL) was calculated according to Eq. 

(2): 

𝑊𝐿(%) = (𝑚𝑓 − 𝑚𝑖 ) 𝑚𝑖 ⁄ × 100    Eq. (2) 

Where mf is the mass of the dried specimen after its immersion in water, and mi is the 

mass of the dried specimen before immersion in water. 

Thermogravimetric analysis (TGA) was used to determine the amount of BBGs 

incorporated in the PLLA-BBGs composites and to monitor changes in the weight 

(mass) of the inorganic BBGs present in the scaffolds as a function of degradation 

process. TGA thermograms were obtained using a TGA Q500 series (TA Instruments, 

USA). Experiments were performed in platinum pans, at a heating rate of 40 °C/min 

from 50 °C to 700 °C under oxygen atmosphere. 

2.4. Cytotoxicity evaluation 

The cytotoxicity assessment was performed by culturing Saos-2 cells in the presence of 

the PLLA-BBG scaffolds. Cells were expanded in Dulbecco's Modified Eagle Medium 

(Sigma, USA) supplemented with 10% heat-inactivated foetal bovine serum (FBS, 

Alfagene, USA) and 1% antibiotic/antimycotic solution (100 U/mL penicillin and 100 

μg/mL streptomycin; Alfagene, USA). Cells were cultured at 37 °C in an atmosphere of 

5% CO2. Confluent Saos-2 cells between passages 13 and 17 were harvested and seeded 

onto the bottom of 24-well plates at a density of 2×10
4
 cells/well before put in contact 

with scaffolds. The Saos-2 cells cultured in the presence of PLLA and absence of glass 

particles were used as negative control and latex (6 mm discs) were used as positive 

control. 
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The metabolic activity and cellular proliferation of the Saos-2 cells were monitored at 1, 

3 and 7 days by MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-

sulfophenyl)-2 H-tetrazolium – Promega, UK) and PicoGreen
®
 (Quant-iT

™
 PicoGreen

®
 

dsDNA Assay Kit – Invitrogen, USA), respectively, following the supplier’s 

instructions. 

2.5. Cell adhesion experiments 

The cell adhesion study was performed with hASCs. The hASCs cells were isolated 

from human subcutaneous adipose tissue samples obtained from lipoaspiration 

procedures performed on women with ages between 35 and 50 years old (under a 

protocol previously established with the Department of Plastic Surgery of Hospital da 

Prelada in Porto, Portugal) and frozen at -80 °C. The cells were grown in a culture 

medium consisting of αMEM, 10% FBS and 1% of antibiotic-antimycotic mixture. 

When an adequate cell number was obtained (P3), cells were detached with 

trypsin/EDTA and seeded at a density of 3×10
4
 cells onto the surface of each scaffold. 

After 24 h of cell attachment, cell-constructs were placed in new 24-well plates and 1 

mL of basal medium was added to each well. The basal culture medium consisted of 

αMEM (Gibco, UK) supplemented with 10% FBS and 1% antibiotic/antimycotic 

solution (final concentration of penicillin 100 units/mL and streptomycin 100 mg/mL). 

The cell-constructs were cultured for 7 and 21 days in a humidified atmosphere at 37 °C, 

containing 5% CO2. The culture medium was changed every 2–3 days until the end of 

the experiment. The metabolic activity and cellular proliferation were monitored at 7 

and 21 days by MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-

sulfophenyl)-2 H-tetrazolium – Promega, UK) and PicoGreen
®
 (Quant-iT™ 

PicoGreen
®
 dsDNA Assay Kit – Invitrogen, USA), respectively, following the 

supplier’s instructions. 
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Cell morphology was also evaluated at 7 and 21 days; cells were washed twice with 

phosphate buffer saline (PBS) and then fixed with Formalin for 15 min at room 

temperature. Prior to the analysis by SEM (Leica Cambridge S360, UK) equipped with 

an energy dispersive spectrometer (EDS; link-eXL-II), the samples were sputter coated 

(Fisons Instruments SC502, UK) with gold or carbon. 

3. Results and Discussion 

Silicate-based bioactive glass particles have been reported to improve the bioactive 

performance of scaffolds for tissue engineering [34, 35], as well as, stimulating the 

proliferation and differentiation of cells [4, 18]. Herein, we evaluated the impact of 

borosilicate-based glasses (presenting different divalent modifier cations, i.e. Mg
2+

, 

Ca
2+

 and Sr
2+

) on the degradation and bioactivity of wet-spun PLLA-BBG composites, 

as well as, their cytotoxicity towards Saos-2 and hASCs and the adhesion and 

proliferation of hASCs cultured onto the scaffolds. 

3.1. Characterisation of wet-spun fibre mesh scaffolds 

PLLA-BBG fibres were produced using a solution of PLLA in chloroform to which the 

synthesised BBGs (<63 µm and density of ~2.8 g.cm
-3

) were suspended. Upon injection 

of this suspension into a methanolic coagulation bath the fibres were dried and moulded 

by fibre bonding. Scaffold specimens were prepared as 6 mm diameter discs (using a 

puncture), sterilised (88% CO2 and 12% ethylene oxide at 45 °C with 180 kPa and 55% 

of humidity for 10 h) and preserved in a desiccator. Figure 1 presents the SEM images 

and X-ray diffraction patterns of the PLLA-BBG scaffolds. 
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[Figure 1] 

Figure 1. SEM micrographs with insets of BBG particles incorporated into the fibres (a, 

b, c and d) and X-ray diffraction patterns (e) of PLLA and PLLA-BBG scaffolds (PLLA-

BBG-Mg, PLLA-BBG-Ca and PLLA-BBG-Sr). 

The XRD patterns of the scaffolds exhibited the characteristic peaks of PLLA at 2θ = 

12.5 °, 14.7 °, 16.6 °, 19.1° and 22.3°, while there are no detectable peaks of BBGs due 

to their amorphous state and low concentration at the scaffold surface [36]. 

The morphological analysis of the PLLA and PLLA-BBGs scaffolds was executed by 

μ-CT (Figure 2). We observed the typical fibre mesh structure with random porous 

distribution, which are vital for cell ingrowth [27, 37], as well as a homogenous 

dispersion of BBGs all over the scaffolds. From the mathematical analysis of the data 

(performed by the CTAn software, Table 1) it is possible to determine the porosity, 

interconnectivity and thickness of the scaffolds. These properties were unchanged with 

the incorporation of BBGs. The whole set of scaffolds presented porosities ranging from 

53 to 67% and interconnectivity between 58 and 62%. It is also relevant to point out that 

the mean pore diameters are >100 µm, within the range of optimal pore size for cell 

penetration, regeneration and mineralisation of bone [27, 38]. Therefore, combining wet 

spinning and fibre bonding we were able to prepare PLLA-BBGs scaffolds with 

morphological characteristics appropriate for cell colonization. 

[Figure 2] 

Figure 2. Representative μCT cross-sections of the PLLA and PLLA-BBGs scaffolds. 

The upper images combine the PLLA fibres (blue) and the distribution of the BBGs 

(red), while the bottom images represent only the distribution of BBG particles (red) 

within the scaffold. 
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Table 1. Porosity, mean pore diameter and interconnectivity of the scaffolds determined 

by μCT 

Samples Porosity (%)
*
 Mean pore diameter (μm)

*
 Interconnectivity (%)

*
 

PLLA 64.57 ± 7 117.41 ± 7 57.53 ± 4 

PLLA-BBG-Mg 53.39 ± 2 148.77 ± 6 57.80 ± 5 

PLLA-BBG-Ca 66.75 ± 2 111.65 ± 6 61.55 ± 6 

PLLA-BBG-Sr 63.53 ± 5 126.17 ± 6 58.91 ± 3 

* No statistically significant differences were detected. 

3.2. In vitro degradation and bioactivity 

The WL and WU are strongly correlated with the water stability and biodegradability of 

the scaffolds. They are extremely relevant properties to determine their expected 

lifetime under the physiological environment [39]. The WL (Figure 3a) data shows a 

faster degradation rate for the PLLA-BBGs compared to PLLA over 30 days of 

immersion in ultrapure water (e.g. at day 30, the PLLA-BBGs’ WL is ~15% higher than 

the PLLA’s WL). This data clearly suggests that the addition of BBG particles to the 

scaffolds augments its biodegradability, reflected in the increase of the WL of the 

composites [6, 40]. 

In the case of the WU (Figure 3b), while the PLLA scaffolds uptake a constant amount 

of water throughout the tested time period (i.e. ~15%), the PLLA-BBGs scaffolds 

present a WU peak at day 7 (similar to the PLLA WU) followed by a subsequent 

reduction over the immersion time. This latter reduction is probably associated with the 

increase of the local concentrations of inorganic species leached from the glass that, 

subsequently, at the latter time point, deposit in the surface of the glass particles, 
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limiting the exchange of water between the immersion solution and the inorganic 

portion of the composites. 

The release profile of inorganic species (Figure 3c, data obtained by ICP) showed a 

continuous release of B, Si, Ca/Sr/Mg–related species over the tested timeframe. This 

was accompanied with an increase of the solution pH (from ≈6 to ≈9.6 over 30 days), 

which might be critical to balance the pH decrease generated by the inflammatory 

process that precedes tissue regeneration of the implanted scaffold. There was a higher 

release rate in the case of PLLA-BBG-Mg scaffolds, which can be related with the 

relatively smaller size of Mg
2+

 (when compared with Ca
2+

 and Sr
2+

) that enhance its 

diffusion from the glass particles to the surrounding medium. This was also confirmed 

by TGA where we detected a larger reduction of the glass percentage in the composites 

containing BBG-Mg after 30 days of immersion (from ~24% to ~18%). 

[Figure 3] 

Figure 3. WL (a), WU (b) and release profile of chemical species (c) of the PLLA and 

PLLA-BBG scaffolds over 30 day of immersion in ultrapure water at 37 ºC. 

Typically, a bioactive material should promote the formation of a calcium phosphate 

layer on its surface upon immersion in SBF [41]. In [Figure 4] 

Figure 4 we present the SEM images and the XRD patterns of the PLLA and PLLA-

BBGs after immersion in SBF for 0, 7 and 14 days. The SEM images clearly 

demonstrate the deposition of an apatite-like layer in the surface of the composites, 

namely close to the glass particles, after 7 and 14 days of immersion in SBF. These 

layers present a cauliflower morphology, which is the characteristic shape of apatite 

structures, including hydroxyapatite [42, 43]. Furthermore, the EDS analysis executed 

on the regions where the inorganic deposits were observed indicate Ca/P ratios of ~1.5 
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for day 7 and ~1.7 for day 14, which is close to the typical apatite Ca/P ratio of 1.67 

[44]. In addition, the ICP quantification of the Ca and P present in the SBF as a function 

of time corroborates this findings, revealing a fast deposition of phosphates onto the 

surface of the PLLA-BBG scaffolds which might be related with the initial formation of 

amorphous calcium phosphates and, afterwards, to their evolution to a crystalline phase 

[45]. Nevertheless, in the case of the PLLA scaffolds ([Figure 4] 

Figure 4a, used as controls), the SEM micrographs do not show any deposition of 

inorganic layers at the surface of the scaffolds. 

The XRD patterns of the PLLA-BBG scaffolds after 7 and 14 days of immersion in SBF 

presented characteristic peaks of crystalline phosphate structures (2θ = 28.9 º and 2θ = 

25.8 º), while there are no peaks observed for the PLLA scaffolds [46, 47]. The peak 2θ 

= 28.9 º, which appeared in all PLLA-BBG scaffolds ([Figure 4] 

Figure 4b, 4c and 4d), is commonly attributed to hydroxyapatite structures [47]. To 

emphasise, PLLA-BBG-Ca scaffolds ([Figure 4] 

Figure 4c) presented a ~5 times higher peak (2θ = 28.9 º) at day 14 of immersion 

comparing with other two scaffolds, PLLA-BBG-Mg and PLLA-BBG-Sr ([Figure 4] 

Figure 4c in relation to [Figure 4] 

Figure 4a and [Figure 4] 

Figure 4d, respectively). This observation is indicates that the higher concentration of 

Ca
2+

 cations (from the SBF and leached from the BBG-Ca glass particles) promotes an 

increase on the formation of calcium phosphate crystalline structures on the surface of 

the scaffolds. The peak at 2θ = 28.9 º can also be attributed to tricalcium phosphate (i.e. 

Ca3(PO4)2).[48] Regarding the PLLA-BBG-Mg scaffolds, the same peak (2θ = 28.9 º) is 
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found, but with lower intensity, which can be also related with the formation of 

magnesium phosphate crystalline structures (i.e. Mg3(PO4)2) [49]. The peaks at 2θ = 

25.4 º and 2θ = 28.9 º are also present in the PLLA-BBG-Sr XRD pattern, however, 

they are with lower intensity than the ones recorded for the PLLA-BBG-Ca (Figure 4d 

and 4c, respectively). These two peaks are commonly associated with the formation of 

apatite structures [47, 50]. In the specific case of the peak at 2θ = 25.4 º, it is usually 

associated with apatite structures where calcium is substituted by strontium [46]. The 

lower intensity of the peaks may be due to the fact that the Sr
2+

 cations affect the 

adsorption of Ca
2+

 in the initial stages of apatite formation [51]. Those two peaks are 

also found in the strontium phosphate crystalline phases, such as SrHPO4 [52]. Overall, 

the XRD data is consistent with the deposition of Ca/Mg/Sr phosphates on the surface 

of the PLLA-BBGs scaffolds, that subsequently evolve to form different crystalline 

phases until it forms an hydroxyapatite-like surface layer with their characteristic 

cauliflower morphology. 

[Figure 4] 

Figure 4. XRD patterns and SEM micrographs of (a) PLLA, (b) PLLA-BBG-Mg, (c) 

PLLA-BBG-Ca, and (d) PLLA-BBG-Sr, after 7 and 14 days of immersion in SBF at 37 

ºC. 

3.3. In vitro cytotoxicity 

The PLLA and PLLA-BBGs scaffolds were tested for their in vitro cytotoxicity. To this 

purpose, we evaluated the metabolic activity and cell proliferation of Saos-2 cells 

cultured in direct contact with the scaffolds for 7 days (Figure 5a). Under these 

experimental conditions, neither PLLA nor PLLA-BBG scaffolds induced a significant 

reduction of the cellular metabolic activity. DNA quantification (Figure 5b) presents a 
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similar profile, indicating that a similar amount of DNA was detected when the cells 

were in contact with PLLA and PLLA-BBG scaffolds. In conjunction the metabolic 

activity and DNA quantification data revealed that the presence of the BBGs particles 

did not induce any significant differences in cell proliferation, demonstrating that the 

incorporation of BBGs did not elicit any cytotoxic effects. 

[Figure 5] 

Figure 5. MTS (a) and DNA (b) quantification data of Saos-2 cells cultured in direct 

contact with PLLA and PLLA-BBG scaffolds during 1, 3 and 7 days. Latex discs were 

used as positive control and standard culture medium was used as negative control. The 

data was obtained from at least 3 independent experiments and is expressed as mean ± 

SD. The data was analysed by non-parametric statistics: Kruskal-Wallis test (p<0.001), 

followed by a Dunn’s Multiple Comparison test. 
***

Extremely significant (p<0.001); 

**
Very significant (0.001<p<0.01); 

*
Significant (0.01<p<0.05). 

 

3.3. Cell adhesion assay 

hASCs are widely studied for bone tissue engineering due to their high abundance in fat 

tissue, ease to harvest and proliferate and, specially, because they present a high 

percentage of their population with an osteogenic potential [53, 54]. The cell adhesion 

assay was used to evaluate the suitability of the PLLA-BBG scaffolds for guided bone 

regeneration. hASCs were directly seeded on the top of the scaffolds (PLLA and PLLA-

BBGs) and their morphology and ability to proliferate were assessed by SEM (Figure 6a 

through 6h), MTS and DNA quantification (Figure 6i and Figure 6j, respectively).  
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[Figure 6] 

Figure 6. Adhesion and proliferation study of the hASCs cultured on PLLA and PLLA-

BBG scaffolds analysed by SEM after 21 days of cell culture: (a) PLLA, (b) PLLA-BBG-

Mg, (c) PLLA-BBG-Ca and (d) PLLA-BBG-Sr. Cross-sections of (e) PLLA, (f) PLLA-

BBG-Mg, (g) PLLA-BBG-Ca and (h) PLLA-BBG-Sr scaffolds are presented to evaluate 

the capacity of the hASCs to colonize the interior of the scaffolds. Red circles show cell 

that are driving from the top layer to the interior of the scaffolds. (i) MTS and (j) DNA 

quantification executed after 7 and 21 days of hASC cell culture. Standard culture 

medium was used as negative control. The metabolic activity and cell proliferation data 

is expressed as mean ± SD. The data was analysed by non-parametric statistics: 

Kruskal-Wallis test (p<0.001), followed by a Dunn’s Multiple Comparison test. 

***
Extremely significant (p<0.001); 

**
Very significant (0.001<p<0.01); 

*
Significant 

(0.01<p<0.05). 

The SEM micrographs show that cells were able to attach and spread on the surface of 

all the scaffolds, as well as to penetrate through their pores (Please see red circles, 

Figure 6e through Figure 6h). MTS and DNA quantification data showed no 

significant differences between the PLLA/PLLA-BBGs scaffolds and the control 

experiment. It is also relevant to emphasize that, after 21 days of cell culture a complete 

monolayer of cells were attached to the outer surface of the scaffolds in all the cases. 

However, this phenomenon was more pronounced for the PLLA-BBGs scaffolds, in 

particular for the composite that was formulated with the BBG-Ca microparticles, i.e. 

PLLA-BBG-Ca (Figure 6c). In combination with the bioactivity analysis (where the 

PLLA-BBG-Ca scaffold presented a higher deposition of calcium phosphate crystalline 

phases), the biological evaluation data supports the suitability of this composition to 

generate a 3D porous structure that is able to promote cell attachment, proliferation and 
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colonization of the bulk of the scaffold [54]. The great biodegradable and bioactive 

properties of PLLA-BBG composite scaffolds combined with their suitability for cell 

colonization support that PLLA-BBG composite scaffolds can be used to achieve 

medical-grade material for development of bone tissue engineered implants. Other in 

vivo mechanical and biocompatibility studies will be done in the near future. 

4. Conclusions 

PLLA-BBG scaffolds were successfully prepared through the incorporation of 25% 

(w/w) of BBGs (with different divalent glass modifier cations, i.e. Mg
2+

, Ca
2+

 and Sr
2+

) 

in the PLLA matrix. The µCT analysis demonstrated that our procedure generated 3D 

scaffolds with an interconnected structured with a high degree of porosity (58 to 62% of 

interconnectivity and 53 to 67% of porosity) and a mean pore diameter >100 µm - 

suitable for cell colonization of the bulk of the scaffolds. Degradation studies confirmed 

that the incorporation of BBG particles enhance the degradability of the composites 

with a constant release of inorganic species to the surrounding media. Bioactivity 

studies demonstrated that PLLA-BBG scaffolds are capable to produce a calcium 

phosphate-rich surface layer (PLLA-BBG-Ca and PLLA-BBG-Sr) after 7 days of 

culture (Ca/P ratio ~1.7). In vitro cell studies revealed that the proposed PLLA-BBG 

scaffolds do not elicit any cytotoxicity over 7 days of culture, while hASC’s were able 

to adhere and proliferate throughout the surface and inner sections of the porous 

scaffolds, being a suitable for bone tissue engineering. 
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Highlights 

 We prepared borosilicate glasses and their PLLA composites in the form of 

fibres 

 These glasses imparted bioactivity and controlled degradability to the fibres 

 The prepared fibres did not elicit cytotoxicity 

 hASCs attached and proliferated in the surface and inner sections of the 

scaffolds 

 The composites present appropriate properties to be used in bone tissue 

engineering 


