10,851 research outputs found

    Modulation of Shoot Phosphate Level and Growth by PHOSPHATE1 Upstream Open Reading Frame.

    Get PDF
    Inorganic orthophosphate (Pi) is an essential nutrient for plant growth, and its availability strongly impacts crop yield. PHOSPHATE1 (PHO1) transfers Pi from root to shoot via Pi export into root xylem vessels. In this work, we demonstrate that an upstream open reading frame (uORF) present in the 5' untranslated region of the Arabidopsis (Arabidopsis thaliana) PHO1 inhibits its translation and influences Pi homeostasis. The presence of the uORF strongly inhibited the translation of a PHO1 5'UTR-luciferase construct in protoplasts. A point mutation removing the PHO1 uORF (ΔuORF) in transgenic Arabidopsis resulted in increased association of its mRNA with polysomes and led to higher PHO1 protein levels, independent of Pi availability. Interestingly, deletion of the uORF led to higher shoot Pi content and was associated with improved shoot growth under low external Pi supply and no deleterious effects under Pi-sufficient conditions. We further show that natural accessions lacking the PHO1 uORF exhibit higher PHO1 protein levels and shoot Pi content. Increased shoot Pi content was linked to the absence of the PHO1 uORF in a population of F2 segregants. We identified the PHO1 uORF in genomes of crops such as rice (Oryza sativa), maize (Zea mays), barley (Hordeum vulgare), and wheat (Triticum aesativum), and we verified the inhibitory effect of the rice PHO1 uORF on translation in protoplasts. Our work suggests that regulation of PHO1 expression via its uORF might be a genetic resource useful-both in natural populations and in the context of genome editing-toward improving plant growth under Pi-deficient conditions

    Sulfation degree of glycosaminoglycans triggers distinct cytoskeleton organisation in mesenchymal stem cells

    Get PDF
    Glycosaminoglycans (GAGs) comprise the closest cellular environment: they are building elements of the ECM and can be also found on cells surface. Their biological activity depends on several parameters among which the negative charge is of prime importance[1]. This charge is generally associated with the presence of sulfate groups (-OSO3H). Sulfation is a dynamic modification: it can occur at various positions within the glycan and different sulfation patterns have been identified for the same organs and cells during their development. However, the mechanisms of coding and transferring information by these functionalities are not yet complete understood, mainly because of (i)the complex physiological microenvironment in which GAGs interactions occur and (ii)the inability to access homogeneous GAGs[2]. In this work, we propose model surfaces bearing GAGs with different sulfation degree as platform to investigate the pathways by which mesenchymal stem cells (MSCs) sense and respond to this peculiar functionality: the -OSO3H. We have selected two natural GAGs for this study: hyaluronic acid (HA) because it is the only non-sulfated glycan and heparin (HEP) as it is the GAG with the highest degree of sulfation. To obtain a larger range of sulfation degrees, we have also prepared a synthetic analogue of HA with a sulfation degree of 1.4 (sHA). All these GAGs were covalently bonded to aminothiols deposited on gold surfaces. MSCs, both from bone marrow and adipose tissue, adhered well to all surfaces. Formation of focal adhesions was observed after only 1h of culture for bone marrow derived MSCs regardless the used substrate. The presence of –OSO3H groups induced different morphology and cytoskeleton organisation: formation of longer filopodia and well pronounced actin fibers were visible for the MSCs from both sources. Moreover, cells were more spread after 24h in contact with – OSO3H containing surfaces. Cells behaved similarly on both sulfated surfaces (sHA and HEP) and differences in cell morphology were less obvious: higher sulfation degree induced less lamellipodia formation while filopodia number and length increased. In summary, the present study provides evidence that sulfation degree of GAGs triggers distinct cytoskeleton organisation in mesenchymal stem cells that may be related with the differentiation of those cells. However, further studies at the molecular level about the exact mechanism of these processes need to be carried out

    Proteasome Lid Bridges Mitochondrial Stress with Cdc53/Cullin1 NEDDylation Status

    Get PDF
    Cycles of Cdc53/Cullin1 rubylation (a.k.a NEDDylation) protect ubiquitin-E3 SCF (Skp1-Cullin1-F-box protein) complexes from self-destruction and play an important role in mediating the ubiquitination of key protein substrates involved in cell cycle progression, development, and survival. Cul1 rubylation is balanced by the COP9 signalosome (CSN), a multi-subunit derubylase that shows 1:1 paralogy to the 26 S proteasome lid. The turnover of SCF substrates and their relevance to various diseases is well studied, yet, the extent by which environmental perturbations influence Cul1 rubylation/derubylation cycles per se is still unclear. In this study, we show that the level of cellular oxidation serves as a molecular switch, determining Cullin1 rubylation/derubylation ratio. We describe a mutant of the proteasome lid subunit, Rpn11 that exhibits accumulated levels of Cullin1-Rub1 conjugates, a characteristic phenotype of csn mutants. By dissecting between distinct phenotypes of rpn11 mutants, proteasome and mitochondria dysfunction, we were able to recognize the high reactive oxygen species (ROS) production during the transition of cells into mitochondrial respiration, as a checkpoint of Cullin1 rubylation in a reversible manner. Thus, the study adds the rubylation cascade to the list of cellular pathways regulated by redox homeostasis

    Impact strength of composites with nano-enhanced resin after fire exposure

    Get PDF
    Composite materials have been widely used in several engineering applications. However, there are very few studies about the effects of nanoclays on the impact strength of laminates after exposure to the fire. Therefore, this paper intends to study this subject and the impact performance was analysed by low velocity impact tests carried out at different incident impact energy levels. For better dispersion and interface adhesion matrix/clay, nanoclays were previously subjected to a silane treatment appropriate to the epoxy resin. The exposure to the fire decreases the maximum load and increases the displacement in comparison with the respective values obtained at room temperature. Mathematical relationships are proposed to estimate the maximum impact force and displacement, based on the total impact energy and flexural stiffness. Finally, a decrease of the elastic recuperation can be found, independently of the benefits introduced by the nanoclays

    Universality in two-dimensional Kardar-Parisi-Zhang growth

    Full text link
    We analyze simulations results of a model proposed for etching of a crystalline solid and results of other discrete models in the 2+1-dimensional Kardar-Parisi-Zhang (KPZ) class. In the steady states, the moments W_n of orders n=2,3,4 of the heights distribution are estimated. Results for the etching model, the ballistic deposition (BD) model and the temperature-dependent body-centered restricted solid-on-solid model (BCSOS) suggest the universality of the absolute value of the skewness S = W_3 / (W_2)^(3/2) and of the value of the kurtosis Q = W_4 / (W_2)^2 - 3. The sign of the skewness is the same of the parameter \lambda of the KPZ equation which represents the process in the continuum limit. The best numerical estimates, obtained from the etching model, are |S| = 0.26 +- 0.01 and Q = 0.134 +- 0.015. For this model, the roughness exponent \alpha = 0.383 +- 0.008 is obtained, accounting for a constant correction term (intrinsic width) in the scaling of the squared interface width. This value is slightly below previous estimates of extensive simulations and rules out the proposal of the exact value \alpha=2/5. The conclusion is supported by results for the ballistic deposition model. Independent estimates of the dynamical exponent and of the growth exponent are 1.605 <= z <= 1.64 and \beta = 0.229 +- 0.005, respectively, which are consistent with the relations \alpha + z = 2 and z = \alpha / \beta.Comment: 8 pages, 9 figures, to be published in Phys. Rev.

    Duality and Multicritical Point of Two-Dimensional Spin Glasses

    Full text link
    Determination of the precise location of the multicritical point and phase boundary is a target of active current research in the theory of spin glasses. In this short note we develop a duality argument to predict the location of the multicritical point and the shape of the phase boundary in models of spin glasses on the square lattice.Comment: 4 pages, 1 figure; Reference updated, definition of \tilde{V} added; to be published in J. Phys. Soc. Jp

    Time- and momentum-resolved probe of heat transport in photo-excited bismuth

    Get PDF
    We use time- and momentum-resolved x-ray scattering to study thermalization in a photo-excited thin single crystal bismuth film on sapphire. The time-resolved changes of the diffuse scattering show primarily a quasi-thermal phonon distribution that is established in less than or similar to 100 ps and that follows the time-scale of thermal transport. Ultrafast melting measurements under high laser excitation show that epitaxial regrowth of the liquid phase occurs on the time-scale of thermal transport across the bismuth-sapphire interface. (C) 2013 AIP Publishing LLC. (DOI: 10.1063/1.4804291

    NeXSPheRIO results on azimuthal anisotropy in Au-Au collisions at 200A GeV

    Full text link
    In this work, we present the results obtained by the hydrodynamic code NeXSPheRIO on anisotropic flows. In our calculation, we made use of event-by-event fluctuating initial conditions, and chemical freeze-out was explicitly implemented. We studied directed flow, elliptic flow and forth harmonic coefficient for various hadrons at different centrality windows for Au+Au collisions at 200 AGeV. The results are discussed and compared with experimental data from RHIC.Comment: 6 pages and 6 figures, sqm2008 contributio

    Measuring Black Hole Spin using X-ray Reflection Spectroscopy

    Full text link
    I review the current status of X-ray reflection (a.k.a. broad iron line) based black hole spin measurements. This is a powerful technique that allows us to measure robust black hole spins across the mass range, from the stellar-mass black holes in X-ray binaries to the supermassive black holes in active galactic nuclei. After describing the basic assumptions of this approach, I lay out the detailed methodology focusing on "best practices" that have been found necessary to obtain robust results. Reflecting my own biases, this review is slanted towards a discussion of supermassive black hole (SMBH) spin in active galactic nuclei (AGN). Pulling together all of the available XMM-Newton and Suzaku results from the literature that satisfy objective quality control criteria, it is clear that a large fraction of SMBHs are rapidly-spinning, although there are tentative hints of a more slowly spinning population at high (M>5*10^7Msun) and low (M<2*10^6Msun) mass. I also engage in a brief review of the spins of stellar-mass black holes in X-ray binaries. In general, reflection-based and continuum-fitting based spin measures are in agreement, although there remain two objects (GROJ1655-40 and 4U1543-475) for which that is not true. I end this review by discussing the exciting frontier of relativistic reverberation, particularly the discovery of broad iron line reverberation in XMM-Newton data for the Seyfert galaxies NGC4151, NGC7314 and MCG-5-23-16. As well as confirming the basic paradigm of relativistic disk reflection, this detection of reverberation demonstrates that future large-area X-ray observatories such as LOFT will make tremendous progress in studies of strong gravity using relativistic reverberation in AGN.Comment: 19 pages. To appear in proceedings of the ISSI-Bern workshop on "The Physics of Accretion onto Black Holes" (8-12 Oct 2012). Revised version adds a missing source to Table 1 and Fig.6 (IRAS13224-3809) and corrects the referencing of the discovery of soft lags in 1H0707-495 (which were in fact first reported in Fabian et al. 2009
    corecore