48 research outputs found

    Characterization and Glass Formation of JSC-1 Lunar and Martian Soil Simulants

    Get PDF
    The space exploration mission of NASA requires human and robotic presence for long duration beyond the low earth orbit (LEO), especially on Moon and Mars. Developing a human habitat or colony on these planets would require a diverse range of materials, whose applications would range from structural foundations, (human) life support, (electric) power generation to components for scientific instrumentations. A reasonable and cost-effective approach for fabricating the materials needed for establishing a self-sufficient human outpost would be to primarily use local (in situ) resources on these planets. Since ancient times, glass and ceramics have been playing a vital role on human civilization. A long term project on studying the feasibility of developing glass and ceramic materials has been undertaken using Lunar and Martian soil simulants (JSC-1) as developed by Johnson Space Center. The first step in this on-going project requires developing a data base on results that fully characterize the simulants to be used for further investigations. The present paper reports characterization data of both JSC-1 Lunar and JSC Mars-1 simulants obtained up to this time via x-ray diffraction analysis, scanning electron microscopy, thermal analysis (DTA, TGA) and chemical analysis. The critical cooling rate for glass formation for the melts of the simulants was also measured in order to quantitatively assess the glass forming tendency of these melts. The importance of the glasses and ceramics developed using in-situ resources for constructing human habitats on Moon or Mars is discussed

    Glass and Glass-Ceramic Sealant Compositions

    Get PDF
    A glass composition for use as a sealant or otherwise bonded to a fuel cell component, including from about 40 mol % to about 60 mol % RO; from about 2 mol % to about 10 mol % M2O3; and from about 35 mol % to about 45 mol % SiO2. R is selected from the group including strontium, calcium, magnesium and zinc and combinations thereof. M is selected from the group including aluminum, boron, lanthanum, iron and combinations thereof. The glass includes at least about 5 mol % ZnO. Upon heat treatment, the glass at least partially crystallizes with the formation of at least one alkaline earth-zinc pyrosilicate crystalline phases

    Corrosion Resistance of Pipeline Steel with Damaged Enamel Coating and Cathodic Protection

    Get PDF
    This paper presents the first report on the corrosion resistance of pipeline steel with damaged enamel coating and cathodic protection in 3.5 wt % NaCl solution. In particular, dual cells are set up to separate the solution in contact with the damaged and intact enamel coating areas, to produce a local corrosion resistance measurement for the first time. Enamel-coated steel samples, with two levels of cathodic protection, are tested to investigate their impedance by electrochemical impedance spectroscopy (EIS) and their cathodic current demand by a potentiostatic test. Due to its glass transition temperature, the enamel-coated pipeline can be operated on at temperatures up to 400 °C. The electrochemical tests show that cathodic protection (CP) can decelerate the degradation process of intact coating and delay the electrochemical reactions at the enamel-steel interface. However, CP has little effect on the performance of coating once damaged and can prevent the exposed steel from corrosion around the damaged site, as verified by visual inspections. Scanning electron microscopy (SEM) indicated no delamination at the damaged enamel-steel interface due to their chemical bond

    Corrosion-Resistant Glasses for Steel Enamels

    Get PDF
    A cementitious composite material wherein glass-coated steel rods are positioned in a cementitious matrix. The glass composition for coating the steel reinforcing rods includes between about 33-45 weight percent SiO2, 13.5-19.5 weight percent B2O3, 3.5-4.6 weight percent Al2O3, 4.0-13.5 weight percent K2O, 5.5-15.5 weight percent ZrO2, 8.6-15.9 weight percent Na2O, 4.6-5.1 weight percent CaO, 0.6-0.7 weight percent MnO2, 1.0-1.0 weight percent NiO, and 1.0-1.1 weight percent CoO. The glass composition is typically in compression on the rods at ambient temperatures, has a coefficient of thermal expansion of between about 12.5 and about 13.5, and has a softening temperature of between about 585 degrees Celsius and about 600 degrees Celsius

    Electrical Properties of Phosphate Glasses

    Get PDF
    Investigation of the electrical properties of phosphate glasses where transition metal oxide such as iron oxide is the network former and network modifier is presented. Phosphate glasses containing iron are electronically conducting glasses where the polaronic conduction is due to the electron hopping from low to high iron valence state. The identification of structural defects caused by ion/polaron migration, the analysis of dipolar states and electrical conductivity in iron phosphate glasses containing various alkali and mixed alkali ions was performed on the basis of the impedance spectroscopy (IS). The changes in electrical conductivity from as-quenched phosphate glass to fully crystallized glass (glass-ceramics) by IS are analyzed. A change in the characteristic features of IS follows the changes in glass and crystallized glass network. Using IS, the contribution of glass matrix, crystallized grains and grain boundary to the total electrical conductivity for iron phosphate glasses was analyzed. It was shown that decrease in conductivity is caused by discontinuities in the conduction pathways as a result of the disruption of crystalline network where two or more crystalline phases are formed. Also, phosphate-based glasses offer a unique range of biomaterials, as they form direct chemical bonding with hard/soft tissue. The surface charges of bioactive glasses are recognized to be the most important factors in determining biological responses. The improved bioactivity of the bioactive glasses as a result of the effects of the surface charges generated by electrical polarization is discussed

    Corrosion-Resistant Glasses for Steel Enamels

    Get PDF
    A cementitious composite material wherein glass-coated steel rods are positioned in a cementitious matrix. The glass composition for coating the steel reinforcing rods includes between about 33-45 weight percent SiO2, 13.5-19.5 weight percent B2O3, 3.5-4.6 weight percent Al2O3, 4.0-13.5 weight percent K2O, 5.5-15.5 weight percent ZrO2, 8.6-15.9 weight percent Na2O, 4.6-5.1 weight percent CaO, 0.6-0.7 weight percent MnO2, 1.0-1.0 weight percent NiO, and 1.0-1.1 weight percent CoO. The glass composition is typically in compression on the rods at ambient temperatures, has a coefficient of thermal expansion of between about 12.5 and about 13.5, and has a softening temperature of between about 585 degrees Celsius and about 600 degrees Celsius

    The Effects of Silica on the Properties of Vitreous Enamels

    Get PDF
    Ground coat enamels for low carbon steel that contain silica as a mill addition have been developed to study the changes of their properties. Acid-resistant commercial enamel where silica addition was varied from 0 to 10.0 wt % was used for this investigation. The effects of the addition on the corrosion resistance, thermal properties, electrical properties, and mechanical adherence of the enamel to low carbon steel were studied. The corrosion resistance of the steel enameled coupons was tested using a salt spray (fog) apparatus for time periods reaching 168 h at room temperature. It was found that, although the density was not affected, the adherence decreased with an increase in silica content. As expected, the silica addition decreased the coefficient of thermal expansion, which is directly related to the increasing stress between the glass and steel in accordance with the adherence results. A mill addition of 7.5 wt% of silica to the samples was sufficient to obtain adequate enamel adherence and good corrosion resistance. Furthermore, the addition of silica influenced the electrical conductivity and dielectric permittivity measurements at room temperature and the conductivity measured in a wide frequency range (1 Hz-1 MHz). The dielectric permittivity measured at 1 MHz showed decrease after the addition of up to 7.5 wt% of silica

    Effects of Rare-Earth Doping on Femtosecond Laser Waveguide Writing in Zinc Polyphosphate Glass

    Get PDF
    We have investigated waveguide writing in Er-Yb doped zinc polyphosphate glass using a femtosecond laser with a repetition rate of 1 KHz. We find that fabrication of good waveguides requires a glass composition with an O/P ratio of 3.25. The dependence on laser writing parameters including laser fluence, focusing conditions, and scan speed is reported. Waveguide properties together with absorption and emission data indicate that these glasses can be used for the fabrication of compact, high gain amplifying devices

    Coated Steel Rebar for Enhanced Concrete-Steel Bond Strength and Corrosion Resistance

    Get PDF
    This report summarizes the findings and recommendations on the use of enamel coating in reinforced concrete structures both for bond strength and corrosion resistance of steel rebar. Extensive laboratory tests were conducted to characterize the properties of one- and two-layer enamel coatings. Pseudostatic tests were performed with pullout, beam and column specimens to characterize mechanical properties and develop design equations for the development length of steel rebar in lap splice and anchorage areas. The splice length equation was validated with the testing of large-scale columns under cyclic loading. For corrosion properties, ponding, salt spray, accelerated corrosion, potentiodynamic and electrochemical impedance spectroscopy (EIS) tests were conducted to evaluate the corrosion resistance and performance of enamel-coated steel and rebar. Experimental procedures and observations from various laboratory tests are documented in detail. The corrosion performances of enamel and epoxy coatings were compared. It is concluded that a one-layer enamel coating doped with 50% calcium silicate has improved bond strengths with steel and concrete but its corrosion resistance is low due to porosity in the coating, allowing chloride ions to pass through. Based on limited laboratory tests, a two-layer enamel coating with an inner layer of pure enamel and an outer layer of enamel and calcium silicate mixture has been shown to be practical and effective for both corrosion resistance and bond strength. A coating factor of 0.85 is recommended to use with the current development length equations as specified in ACI318-08. The large-scale column tests indicated that the column-footing lap splice with enamel-coated dowel bars had higher load and energy dissipation capacities compared to uncoated dowel bars. When damaged unintentionally, chemically reactive enamel coatings limit corrosion to a very small area whereas epoxy coatings allow corrosion expansion in a wide area underneath the coating
    corecore