128 research outputs found

    Exploring the potential of using Marine-Derived Ingredients: From the extraction to Cutting-Edge Cosmetics

    Get PDF
    The growing understanding and knowledge of the potential of marine species, as well as the application of “blue biotechnology” have been motivating new innovative solutions in cosmetics. It is widely noted that that marine species are important sources of compounds with several biological activities that are yet to be discovered. This review explores various biological properties of marine-derived molecules and briefly outlines the main extraction methods. Alongside these, it is well known the legislative and normative framework of cosmetics is increasingly being developed. In this research segment, there is a growing concern with sustainability. In this sense, “blue biotechnology”, together with the use of invasive species or marine waste products to obtain new active ingredients, haven been emerging as innovative and sustainable solutions for the future’s cosmetics industry. This review also examines the regulatory framework and focus on the recent advancements in “blue biotechnology” and its relevance to the sustainable development of innovative cosmetics.info:eu-repo/semantics/publishedVersio

    Anaplastic thyroid cancer: How far can we go?

    Get PDF
    This research was funded by Fundacao para a Ciencia e a Tecnologia (FCT) through the Project Reference UID/DTP/04138/2019.Globally, thyroid cancer accounts for 2 % of all cancer diagnoses, and can be classified as well-differentiated or undifferentiated. Currently, differentiated thyroid carcinomas have good prognoses, and can be treated with a combination of therapies, including surgical thyroidectomy, radioactive iodine therapy and hormone-based ther-apy. On the other hand, anaplastic thyroid carcinoma, a subtype of undifferentiated thyroid carcinoma character-ized by the loss of thyroid-like phenotype and function, does not respond to either radioactive iodine or hormone therapies. In most cases, anaplastic thyroid carcinomas are diagnosed in later stages of the disease, deeming them inoperable, and showing poor response rates to systemic chemotherapy. Recently, treatment courses using multi-ple-target agents are being explored and clinical trials have shown very promising results, such as overall survival rates, progression-free survival and tumor shrinkage. This review is focused on thyroid carcinomas, with particular focus on anaplastic thyroid carcinoma, exploring its undifferentiated nature. Special interest will be given to the treatment approaches currently available and respective obstacles or drawbacks. Our purpose is to contribute to understand why this malignancy presents low responsiveness to current treatments, while overviewing novel therapies and clinical trials.publishersversionpublishe

    Nanotechnology applied to drug delivery – formulation, development and characterization studies

    Get PDF
    Azelaic acid shows bacteriostatical activity against many microorganism species and is commonly used in the treatment of acne. However, some technical issues and a reduced patient compliance have been associated with its topical application forms. Thus, nanotechnology may represent an innovative strategy that might help to overcome these problems. The objective of this study was to develop and to characterize PLGA nanoparticles containing azelaic acid. Nanoparticles were produced by a modified spontaneous emulsification/solvent diffusion method and then included into a gel of Carbopol 940. Several parameters were characterized such as zeta potential, particle size and encapsulation efficiency. Particle mean size was 378.63 nm (with PI around 0.09) and zeta potential was -7.82 mV. The encapsulation efficiency of azelaic acid was 76 ± 3.81%. Consequently, these PLGA nanoparticles can be considered a useful tool for azelaic acid delivery

    Nanoformulation of seaweed eisenia bicyclis in albumin nanoparticles targeting cardiovascular diseases: In vitro and in vivo evaluation

    Get PDF
    Natural products, especially those derived from seaweeds, are starting to be seen as effective against various diseases, such as cardiovascular diseases (CVDs). This study aimed to design a novel oral formulation of bovine albumin serum nanoparticles (BSA NPs) loaded with an extract of Eisenia bicyclis and to validate its beneficial health effects, particularly targeting hypercholesterolemia and CVD prevention. Small and well-defined BSA NPs loaded with Eisenia bicyclis extract were successfully prepared exhibiting high encapsulation efficiency. Antioxidant activity and cholesterol biosynthesis enzyme 3-hydroxy-3 methylutaryl coenzyme A reductase (HMGR) inhibition, as well as reduction of cholesterol permeation in intestinal lining model cells, were assessed for the extract both in free and nanoformulated forms. The nanoformulation was more efficient than the free extract, particularly in terms of HMGR inhibition and cholesterol permeation reduction. In vitro cytotoxicity and in vivo assays in Wistar rats were performed to evaluate its safety and overall effects on metabolism. The results demonstrated that the Eisenia bicyclis extract and BSA NPs were not cytotoxic against human intestinal Caco-2 and liver HepG2 cells and were also safe after oral administration in the rat model. In addition, an innovative approach was adopted to compare the metabolomic profile of the serum from the animals involved in the in vivo assay, which showed the extract and nanoformulation's impact on CVD-associated key metabolites. Altogether, these preliminary results revealed that the seaweed extract and the nanoformulation may constitute an alternative natural dosage form which is safe and simple to produce, capable of reducing cholesterol levels, and consequently helpful in preventing hypercholesterolemia, the main risk factor of CVDs.info:eu-repo/semantics/publishedVersio

    Preliminary assays towards melanoma cells using phototherapy with gold-based nanomaterials

    Get PDF
    UIDB/00645/2020 UID/DTP/04138/2019 PTDC/MED-QUI/31721/2017 SFRH/BD/148044/2019Cancer like melanoma is a complex disease, for which standard therapies have significant adverse side effects that in most cases are ineffective and highly unspecific. Thus, a new paradigm has come with the need of achieving alternative (less invasive) and effective therapies. In this work, biocompatible gold nanoparticles (GNPs) coated with hyaluronic acid and oleic acid were prepared and characterized in terms of size, morphology and cytotoxicity in the presence of Saccharomyces cerevisiae, and two cell lines, the keratinocytes (healthy skin cells, HaCat) and the melanoma cells (B16F10). Results showed that these GNPs absorb within the near-infrared region (750–1400 nm), in the optical therapeutic window (from 650 to 1300 nm), in contrast to other commercial gold nanoparticles, which enables light to penetrate into deep skin layers. A laser emitting in this region was applied and its effect also analyzed. The coated GNPs showed a spherical morphology with a mean size of 297 nm without cytotoxic effects towards yeast and tested cell lines. Nevertheless, after laser irradiation, a reduction of 20% in B16F10 cell line viability was observed. In summary, this work appears to be a promising strategy for the treatment of non-metastatic melanoma or other superficial tumors.publishersversionpublishe

    How can biomolecules improve mucoadhesion of oral insulin? A comprehensive insight using ex-vivo, in silico and in vivo models

    Get PDF
    Currently, insulin can only be administered through the subcutaneous route. Due to the flaws associated with this route, it is of interest to orally deliver this drug. However, insulin delivered orally has several barriers to overcome as it is degraded by the stomach’s low pH, enzymatic content, and poor absorption in the gastrointestinal tract. Polymers with marine source like chitosan are commonly used in nanotechnology and drug delivery due to their biocompatibility and special features. This work focuses on the preparation and characterization of mucoadhesive insulin-loaded polymeric nanoparticles. Results showed a suitable mean size for oral administration (<600 nm by dynamic laser scattering), spherical shape, encapsulation efficiency (59.8%), and high recovery yield (80.6%). Circular dichroism spectroscopy demonstrated that protein retained its secondary structure after encapsulation. Moreover, the mucoadhesive potential of the nanoparticles was assessed in silico and the results, corroborated with ex-vivo experiments, showed that using chitosan strongly increases mucoadhesion. Besides, in vitro and in vivo safety assessment of the final formulation were performed, showing no toxicity. Lastly, the insulin-loaded nanoparticles were effective in reducing diabetic rats’ glycemia. Overall, the coating of insulin-loaded nanoparticles with chitosan represents a potentially safe and promising approach to protect insulin and enhance peroral delivery.Supported in part by UID/DTP/04138/2019 from FCT, Portugal and DREAMS (ULHT). SEM analysis was funded by FCT/MCTES for the financial support to CESAM (UIDP/50017/2020+UIDB/50017/2020), through national funds. Acknowledgments: The authors are grateful to the Carla Vânia (iMedUlisboa) for her collaboration in HPLC analysis and Joana Moreira (ECTS-ULHT) for her collaboration in conducting some experiments.info:eu-repo/semantics/publishedVersio

    Edible seaweeds extracts: characterization and functional properties for health conditions

    Get PDF
    Seaweeds are popular foods due to claimed beneficial health effects, but for many there is a lack of scientific evidence. In this study, extracts of the edible seaweeds Arame, Nori, and Fucus are compared. Our approach intends to clarify similarities and differences in the health properties of these seaweeds, thus contributing to target potential applications for each. Additionally, although Arame and Fucus seaweeds are highly explored, information on Nori composition and bioactivities is scarce. The aqueous extracts of the seaweeds were obtained by decoction, then fractionated and characterized according to their composition and biological activity. It was recognized that fractioning the extracts led to bioactivity reduction, suggesting a loss of bioactive compounds synergies. The Arame extract showed the highest antioxidant activity and Nori exhibited the highest potential for acetylcholinesterase inhibition. The identification of the bioactive compounds in the extracts allowed to see that these contained a mixture of phloroglucinol polymers, and it was suggested that Nori's effect on acetylcholinesterase inhibition may be associated with a smaller sized phlorotannins capable of entering the enzyme active site. Overall, these results suggest a promising potential for the use of these seaweed extracts, mainly Arame and Nori, in health improvement and management of diseases, namely those associated to oxidative stress and neurodegeneration.info:eu-repo/semantics/publishedVersio

    Scaffolding strategies for tissue engineering and regenerative medicine applications

    Get PDF
    During the past two decades, tissue engineering and the regenerative medicine field have invested in the regeneration and reconstruction of pathologically altered tissues, such as cartilage, bone, skin, heart valves, nerves and tendons, and many others. The 3D structured scaffolds and hydrogels alone or combined with bioactive molecules or genes and cells are able to guide the development of functional engineered tissues, and provide mechanical support during in vivo implantation. Naturally derived and synthetic polymers, bioresorbable inorganic materials, and respective hybrids, and decellularized tissue have been considered as scaffolding biomaterials, owing to their boosted structural, mechanical, and biological properties. A diversity of biomaterials, current treatment strategies, and emergent technologies used for 3D scaffolds and hydrogel processing, and the tissue-specific considerations for scaffolding for Tissue engineering (TE) purposes are herein highlighted and discussed in depth. The newest procedures focusing on the 3D behavior and multi-cellular interactions of native tissues for further use for in vitro model processing are also outlined. Completed and ongoing preclinical research trials for TE applications using scaffolds and hydrogels, challenges, and future prospects of research in the regenerative medicine field are also presented.This research was funded by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF) (NORTE-01-0145-FEDER-000023) and by the Portuguese Foundation for Science and Technology ((M-ERA-NET/0022/2016), Transitional Rule DL 57/2016 (CTTI-57/18-I3BS(5)), and (IF/01285/2015))
    corecore